Digital Forensics
Lecture 01 - Disk Forensics

An Introduction to

Akbar S. Namin
Texas Tech University
Spring 2017
Digital Investigation Foundations

• Digital Investigations and Evidence
 – Investigation of some type of digital device that has been involved in an incident or crime
 – Committed a physical crime or executed a digital event that violated a policy or law
 • E.g., a suspect used the internet to conduct research about a physical crime
 • E.g., an attacker gains unauthorized access to a computer, a user downloads contraband materials, or a user sends a threatening email.
 – An investigator’s job: When the violation occurred and who or what caused it to occur
Digital Investigation Foundations

• Digital Investigations
 – A process where we develop and test hypotheses that answer questions about digital events.

• Use scientific methods: develop a hypothesis using evidence and test the hypothesis by looking for additional evidence that shows the hypothesis is impossible.

• Digital evidence
 – A digital object that contains reliable information that supports or refutes a hypothesis
Digital Investigation Foundations

• Forensic
 – The American Heritage Dictionary: “An adjective and relating to the use of science or technology in the investigation and establishment of facts or evidence in a court of law”

• A Digital Forensic Investigation
 – A process that uses science and technology to analyze digital objects and that develops and tests theories, which can be entered into a court of law, to answer questions about events that occurred.
 – A more restricted form of digital investigation
Digital Investigation Foundations

• Digital Crime Scene Investigation Process
 – There is no single way
 – A typical approach:
 • Three major phases
 – System prevention
 – Evidence searching
 – Event reconstruction
 – This process can be used when investigating both live and dead systems
 • A live analysis: occurs when we use the OS or other resources of the system being investigated to find evidence
 – We risk getting false information because the software could maliciously hide or falsify data
 • A dead analysis: occurs when we are running trusted applications in a trusted OS to find evidence
 – More ideal, but is not possible in all circumstances

TTU – Digital Forensics – 2017
Digital Investigation Foundations

- System Preservation Phase
 - Try to preserve the state of the digital crime scene
 - The purpose: reduce the amount of evidence that may be overwritten
 - The process continues after data has been acquired from the system because we need to preserve the data for future analysis
 - The goal: reduce the amount of evidence that is overwritten, we want to limit the number of processes that can write to the storage devices

- Preservation Techniques
 - For a dead analysis: we terminate all processes by turning the system off, and make duplicate copies of all data
 - For a live analysis, suspect processes can be killed or suspended
 - The network connection can be unplugged
 - Important data should be copied from the system in case it is overwritten while searching for evidence
 - When data are saved, a cryptographic hash should be calculated to later show that the data have not changed (e.g., MD5, SHA)
Digital Investigation Foundations

• Evidence Searching Phase
 – Looking for data that support/refute hypotheses about the incident
 – Typically starts with a survey of common locations based on the type of incident
 • E.g., if we are investigating Web-browsing habits, we should look at the Web browser cache, history file, and bookmarks.
 • E.g., if we are investigating a linux intrusion, we look for signs of a rootkit or new user accounts.
 – While the investigation proceeds, we develop hypotheses
 • An iterative process
Digital Investigation Foundations

• Search Techniques
 – Mostly done in a file system and inside files
 – A common search common: search for files based on their names or patterns
 – Another common technique: search for files based on a keyword in their content
 – A third one: search for files based on their temporal data, (i.e., last accessed, written time)
 – Search for known files by comparing the MD5 or SHA hash of a file’s content with a hash database such as the National Software Reference Library (NSRL)
 – Hash databases can be used to search for files based on signatures in their content
Digital Investigation Foundations

- Event Reconstruction Phase
 - Use the evidence that we found
 - This phase requires knowledge about the applications and the OS that are installed on the system
 - We may have found several files that violate a corporate policy or law, but that does not answer questions about events
 - We should determine what application downloaded an application
 - Is there any evidence that a Web browser downloaded them, or a malware has done it?
Digital Investigation Foundations

- General guidelines
 - PICL (Preservation, Isolation, Correlation, and Logging)
 - Preservation
 - Do not modify any data that could have been evidence
 - Copy important data
 - Calculate MD5 or SHA hashes of important data
 - Use a write-blocking device
 - Minimize the number of files created during a live analysis
 - They can overwrite evidence in unallocated space
 - Be careful when opening files
 - You could be modifying important data (e.g., last access time)
Digital Investigation Foundations

• General guidelines
 – PICL (Preservation, Isolation, Correlation, and Logging)
 – Isolation
 • Isolate the analysis environment from both the suspect data and the outside world
 • The reason: you do not know what it might do
 • Isolation is implemented by viewing data in a virtual environment (e.g., vmware)
 • Isolate from the the outside world
 – If tampering is done, you do not transmit anything
Digital Investigation Foundations

- General guidelines
 - PICL (Preservation, Isolation, Correlation, and Logging)
 - Correlate
 - Correlate data with other independent sources
 - It helps reduce the risk of forged data
 - E.g., timestamps can be easily changed
 - If time is important, try to find log entries, network traffic, or other events
 - Log
 - Helps identify what searches you have not yet conducted and what your results were
 - Specially it is important when doing live analysis
 - Document what you do
Data Analysis

Analysis types

- Basically two independent analysis areas:
 - Based on storage devices (disk forensics)
 - Based on communication devices (network forensics)

A different analysis areas:
Digital Investigation Foundations

- **Data Analysis**
 - Physical storage media analysis
 - The analysis of the physical storage medium
 - E.g., hard disks, memory chips, and CD-ROMs
 - Reading magnetic data from in between tracks or other techniques that require a clean room
 - A stream of 1s and 0s
 - Memory
 - Organized by processes
 - Volatile storage
 - Volumes
 - Storage devices that are used for non-volatile storage
 - A volume is a collection of storage locations that a user or application can write to and read from
 - Two major concepts:
 - Partitioning
 - Assembly
Digital Investigation Foundations

- **Data Analysis**
 - **Volumes**
 - Two major concepts:
 - Partitioning
 » Divide a single volume into multiple smaller volumes
 - Assembly
 » Combine multiple volumes into one larger volume
 - File systems are the most common contents
 - A collection of data structures that allow an application to create, read, and write files
 - The results of file system analysis could be file content, data fragments, and metadata associated with files
Digital Investigation Foundations

- Data Analysis
 - Application analysis
 - To understand what is inside a file
 - The picture:
 - A disk that is analyzed to produce a stream of bytes
 - Volumes are analyzed at the file system Layer to produce a file
Digital Investigation Foundations

- Overview of Toolkits
 - Christine Siedma’s Electronic Evidence Information site
 - http://www.e-evidence.info
 - Jacco Tunnissen’s Computer Forensics, Cybercrime, and Steganography site
 - http://www.forensics.nl
 - A list of open source forensics tools
 - http://www.opensourceforensics.org
 - EnCase by Guidance Software
 - http://www.encase.com
 - A Windows-based tool
 - Can analyze many file system formats (e.g., FAT, NTFS, HFS+, UFS, Reiser, JFS, CD-ROMs, DVDs)
 - Allows listing the files, recovering deleted files, conducting keyword searches, viewing all graphic images, make timelines of file activity, etc.
 - It has a scripting language called EnScript (it helps automate many tasks)
Overview of Toolkits

- **Forensics Toolkit (FTK) by AccessData**
 - http://www.accessdata.com
 - Windows-based
 - Can acquire and analyze disk, file system, and application data
 - Supports FAT, NTFS, Ext2/3 file systems
 - Application-level analysis
 - Sophisticated searching abilities

- **ProDiscover by Technology Pathways (ProDiscover)**
 - A Windows-based analysis tool
 - Can analyze FAT, NTFS, Ext2/3, and UFS file systems

- **SMART by ASR Data**
 - Linux-based analysis tool
 - Can analyze FAT, NTFS, Ext2/3, UFS, HFS+, JFS, Reiser, CD-ROMs
Digital Investigation Foundations

• Overview of Toolkits
 – The Sleuth Kit / Autopsy (TSK)
 • http://www.sleuthkit.org
 • Unix-based command line analysis tool
 • Based on the Coroner’s Toolkit (TCT) (http://www.porcupine.org)
 • Can analyze FAT, NTFS, Ext2/3, UFS file systems
 • Can list files and directories, recover deleted files, make timelines of file activity
Disk Forensics

• Reference
• File System Forensic Analysis (Brian Carrier)