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Abstract— When paralleled inverters feed a common load, it
is required that the load is shared according to their power
ratings. In this paper, the robust droop controller (RDC)
proposed in the literature for achieving accurate proportional
power sharing for paralleled inverters is implemented in a way
to ensure a bounded closed-loop performance. Using non-linear
Lyapunov methods, it is shown that the controller structure
permits the control input to stay within a predefined range.
While maintaining the main theory of the RDC, the proposed
bounded droop controller (BDC) is proven to guarantee the
stability of the closed-loop system in the sense of boundedness
for the general load case given in the generalized dissipative
Hamiltonian form, which can describe both linear and non-
linear load dynamics. Extended simulation results for two
single-phase inverters operated in parallel are presented to
verify the effectiveness of the BDC for both a linear and a
non-linear load case scenario.

I. INTRODUCTION

The local integration of renewable sources to the electrical
network, which is accomplished using suitable power elec-
tronic devices (inverters), along with energy storage devices
and local loads form a microgrid [1], [2], [3]. In micro-
grids, due to the limited availability of high current power
electronic devices, inverters should be operated in parallel.
In order to avoid circulating currents among the converters,
droop control methodology [1], [2], [4], [5] is applied, which
does not require external communication mechanism among
the inverters [6], [7].

One of the main issues in microgrid operation is the
accurate power sharing among the paralleled inverters in
accordance to their power ratings, which should be main-
tained in both grid-connected and stand-alone operation.
Especially in stand-alone mode, load sharing according to
each inverter size under different operating conditions is a
challenging task [8], which is usually achieved using droop
control techniques. However, conventional droop controllers
introduce inherent limitations in accurate real and reactive
power sharing as noted in [9]. Additionally, the inverter
output impedance plays a key role in accurate load sharing,
since inverters equipped with the conventional droop control
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are required to have the same per-unit output impedance [10].
Therefore, recently, several control designs have been pro-
posed in order to achieve accurate power sharing among the
inverters [11], [12], [13], [14], [15]. Among these techniques,
the robust droop controller (RDC) proposed in [15] has been
proven to achieve accurate load sharing even if numerical
computational errors, disturbances, noises, parameter drifts
and component mismatches occur.

Although a lot of research has been done in the field
of load sharing, the stability properties of the proposed
techniques have not been extensively exploited. Most of the
stability analysis has been focused on small-signal mod-
elling and linearization methods [12], [13], [16], which
are only valid around a specific equilibrium point (local
stability). Several conditions of the local exponential stability
for frequency droop control are exploited in [17], where
however fixed voltage magnitudes and a purely inductive
network are considered. Due to the non-linear structure of
the droop controller, it becomes obvious that the non-linear
stability analysis is essential for investigating the behavior
of paralleled inverters. Recently, the L∞ stability of the
conventional droop control has been proven in [18] where
asymptotic stability of lossless microgrids is also achieved.
However, the Kron-reduced network approach is considered,
which describes the loads in a linear representation, while
instantaneous frequency regulation is assumed for the anal-
ysis.

To the best of our knowledge, the non-linear closed-
loop system stability using a robust droop control technique,
which achieves accurate load sharing, independently from the
type of the load (linear or non-linear) has not been solved yet.
In this paper, two parallel single-phase inverters feeding a
local load are considered. The load is given in the generalized
dissipative Hamiltonian form, which represents the general
case of a power electronic driven dynamic system [19], [20].
For this system, the RDC proposed in [15] can be considered,
since it is proven to achieve the most robust performance.
Particularly, in the present work, the RDC is implemented
in a way to ensure that the control input stays within a
predefined range, without changing the main concept of
the initial control design. The controller performance is
extensively analyzed using non-linear Lyapunov methods
and is proven to achieve a bounded performance. Using
L∞ stability analysis and the small-gain theorem [21], the
stability of the non-linear closed-loop system is guaranteed.
This represents a significant superiority with respect to the
existing techniques since robust accurate load sharing is
achieved with a guaranteed stability for the general load
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Fig. 1: Schematic diagram of parallel connection of inverters

case. Extensive simulation results for a linear and a non-
linear load are illustrated to verify the effectiveness of the
proposed BDC compared to the RDC.

The paper is organized as follows. In section II, the
dynamic model of the system consisting of two single-phase
inverters and a load is obtained along with its properties and
the robust droop controller is underlined. In section III, the
bounded droop controller is proposed and its performance
is investigated. Furthermore, the stability of the closed-
loop system is proven using non-linear analysis. In section
IV, extensive simulation results are provided to certify the
effectiveness of the proposed bounded control scheme while
finally, in section V, some conclusions are drawn.

II. MODELLING AND CONTROL OF PARALLELED
INVERTERS

A. Dynamic model

Figure 1 represents the schematic diagram of two single-
phase paralleled inverters connected to a common load. An
LC filter is assumed at the output of each inverter where L1,
L2 and C1, C2 are the filter inductances and capacitances
respectively for each inverter. In practice, each inductor and
capacitor introduces parasitic resistances represented as R1

and R2 in series with the inductors (typically very small) and
rC1 and rC2 in parallel with the capacitors (typically very
large). Variables vr1, vr2 and i1, i2 are the inverter output
voltages and currents respectively while vo and iL are the
load voltage and current respectively. It should be noticed
that the capacitors along with the parasitic resistances can
be assumed as a part of the load and therefore, C1, C2, rC1

and rC2 can represent some of the load characteristics as
well [9].

The dynamic equations of the system are given as:

L1
di1
dt

= −R1i1 − vo + vr1

L2
di2
dt

= −R2i2 − vo + vr2 (1)

(C1 + C2)
dvo
dt

= i1 + i2 −
rC1 + rC2

rC1rC2
vo − iL

Since in practice most of the loads are fed by power
electronic devices (power converters), then by using average
analysis [19], the load can be represented by the generalized
dissipative Hamiltonian form [19], [20]:

Mẇ = (J (w, µ(t))−R)w +Gvo (2)

where w =
[
iL w1 w2... wm−1

]T ∈ Rm represents
the states of the load and µ(t) is a time-varying bounded

vector in a closed set which describes the duty-ratio signals
of the converters. Matrix M is constant positive definite,
J is skew-symmetric, R is constant and positive definite
and G =

[
1 01×(m−1)

]T
. For the load equation (2),

the load voltage can be considered as an input for the load
system (in fact this is usually the case when for example a
voltage source device is connected at the inverter’s output). It
should be also noted that all non-linearities of the load and
the bounded duty-ratio signals µ(t) are restricted into the
skew-symmetric matrix J . This is a common issue in power
systems, especially for power converter-fed loads [19], [20],
[22]. As a result, the complete plant system can be written
into the generalized dissipative Hamiltonian form:

M̃ ˙̃x =
(
J̃ (x̃, µ(t))− R̃

)
x̃+ G̃u (3)

where the state vector is x̃ =
[
i1 i2 vo wT

]T
, the

input vector is u =
[
vr1 vr2

]T
and matrices M̃ , J̃ and

R̃ retain the properties already mentioned:

M̃ =


L1 0 0 01×m
0 L2 0 01×m
0 0 C1 + C2 01×m

0m×1 0m×1 0m×1 M

 ,

J̃ =


0 0 −1 0 01×(m−1)
0 0 −1 0 01×(m−1)
1 1 0 −1 01×(m−1)
0 0 1 0 JT12

0(m−1)×1 0(m−1)×1 0(m−1)×1 −JT12 J22

 ,

R̃ =


R1 0 0 01×m
0 R2 0 01×m
0 0 rC1+rC2

rC1rC2
01×m

0m×1 0m×1 0m×1 R

 ,
G̃ =

[
1 0 01×m
0 1 01×m

]T
where J =

[
0 J12
−JT12 J22

]
with J12 and J22 being 1 ×

(m− 1) and (m− 1)× (m− 1) matrices respectively.

B. Robust droop controller (RDC)

Droop control is a common power sharing technique for
inverters operated in parallel. However, conventional droop
control techniques fail to achieve accurate power sharing
when the two inverters do not introduce the same per-unit
output impedances [9]. This problem can be solved using a
robust droop control (RDC) technique as proposed in [15]
which, for each inverter (i ∈ {1, 2}), takes the form:

Ėi = Ke (E∗ − Vo)− niQi (4)

θ̇i = ω∗ −miPi (5)

where Ei and θi are the RMS value and the angle of the
i-th inverter output voltage, E∗ and ω∗ are the rated voltage
and angular velocity respectively, Vo represents the RMS
voltage of the load and Pi, Qi are the real and reactive
power delivered at the load by the i-th inverter. Control
parameters Ke, ni and mi are suitably determined by the
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desired voltage and frequency droop ratio [15]. Thus, the
control input (inverter output voltage) is given in the form:

vri =
√

2Ei sin (θi) (6)

However, the controller structure and dynamics are non-
linear, while the RMS load voltage is a non-linear function
of vo, i.e Vo (vo), and the real and reactive powers are also
non-linear functions of vo and ii, i.e. Pi (vo, ii), Qi (vo, ii).
This makes it very difficult to directly investigate the stability
analysis of the closed-loop system. Several researchers have
recently proved the stability of the inverter-based systems
but only the conventional droop controller is used and under
the assumption of a linear load [17], [18]. To the best
of our knowledge, the stability analysis using the robust
droop controller which achieves accurate power sharing for
a general type of load has not yet been exploited.

III. CONTROLLER DESIGN AND ANALYSIS

A. Bounded droop controller (BDC)

In order to facilitate the stability analysis of the inverter-
based system using the robust droop controller, the RMS
voltage dynamics (4) are implemented in the following form,
while keeping the main idea intact:

Ėi = (Ke (E∗ − Vo)− niQi) cEqi (7)

Ėqi = − (Ke (E∗ − Vo)− niQi) cEi (8)

where c is a positive constant. The inverter output voltage is
still given from (6) and the dynamics of the angular velocity
from (5), since the dynamics of (5) do not affect the bounded
property of the control input due to the sin (θi) function.

It should be mentioned that one extra state variable is
added to represent the dynamics of the RMS voltage, while
the initial theory of the robust droop controller is maintained.

It becomes clear from (7)-(8) that the controller structure
is represented by a nonlinear double integrator scheme, thus
acting as an oscillator. In order to understand this fact, the
following Lyapunov function candidate is considered:

Wi = E2
i + E2

qi (9)

where obviously from (7)-(8) it yields Ẇi = 0 and equiva-
lently:

Wi = Wi0 = E2
i0 + E2

qi0, ∀t ≥ 0 (10)

where Ei0 and Eqi0 denote the initial conditions of the
controller states. Therefore, (9) and (10) imply that Ei and
Eqi form a circle with center the origin O and radius
Vi =

√
E2
i0 + E2

qi0 for any Vo and Qi (Figure 2) and they
exclusively move on its circumference with angular velocity
given by the expression:

φ̇i = (Ke (E∗ − Vo)− niQi) c. (11)

Also note that the controller state variables Ei and Eqi
will be bounded in the set [−Vi, Vi] defined by their initial
conditions, independently from the angular velocity (11).

At the desired steady-state equilibrium, it holds true [15]:

Ke (E∗ − V ∗o )− niQ∗i = 0, (12)

where V ∗o and Q∗i are the steady-state values of Vo and Qi
respectively. This equilibrium corresponds to a desired point(
E∗i , E

∗
qi

)
on the circle and simply gives:

φ̇∗i = 0 (13)

which shows that the angular velocity will become zero at
the steady-state equilibrium and Ei and Eqi will eventually
stop.

Since in a typical load sharing application, it is desirable
that each inverter starts operating with a zero output voltage,
the initial conditions of the controller states can be chosen
Ei0 = 0 and Eqi0 = Vi > 0 in order for the states to start
from a point on the Eqi-axis and move clockwise (Figure
2). Assuming that Vi is suitably chosen in order for the
radius of the circle to cover the desired steady-state inverter
output voltage E∗i ∈ [−Vi, Vi], then the controller states
will eventually approach the desired equilibrium. As soon as
they approach this point on the circle, the angular velocity
will be decreasing giving the opportunity for the controller
states to converge to the equilibrium (since at the equilibrium
eq. (12) holds true). If the controller states pass the desired
equilibrium (depending on the plant dynamics), the angular
velocity (11) changes sign, thus making the controller states
oscillate around the desired point until they finally converge
to it. Controller parameter c can obviously improve the
transient response since it affects the angular velocity φ̇i.

It becomes clear that since Ei and Eqi are bounded in
the interval [−Vi, Vi] , then the inverter output voltage vri,
given by (6), is bounded in the interval

[
−
√

2Vi,
√

2Vi
]
, thus

forming a bounded droop controller (BDC) scheme.
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Fig. 2: Controller state performance on Ei − Eqi plane

As a result, the closed-loop system becomes:

˙̄x =



−R1
L1
i1 − 1

L1
vo +

√
2E1 sin(θ1)

L1

−R2
L2
i2 − 1

L2
vo +

√
2E2 sin(θ2)

L2
1

C1+C2
i1 + 1

C1+C2
i2 − rC1+rC2

(C1+C2)rC1rC2
vo − 1

C1+C2
iL

M−1Gvo +M−1 (J (w, µ(t)) −R)w
(Ke (E∗ − Vo (vo)) − n1Q1 (vo, i1)) cEq1
− (Ke (E∗ − Vo (vo)) − n1Q1 (vo, i1)) cE1

(Ke (E∗ − Vo (vo)) − n2Q2 (vo, i2)) cEq2
− (Ke (E∗ − Vo (vo)) − n2Q2 (vo, i2)) cE2

ω∗ −m1P1 (vo, i1)
ω∗ −m2P2 (vo, i2)


(14)

where x̄ =
[
i1 i2 vo w

T E1 Eq1 E2 Eq2 θ1 θ2
]T

=[
xTcl θ1 θ2

]T
is the closed-loop state vector.
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B. Closed-loop system stability analysis

From the closed-loop system form (14), it becomes ob-
vious that the closed-loop system can be investigated as
a feedback interconnection of the plant system and the
controller system (Figure 3).

plant system

controller 
system

1y

2y

Fig. 3: Closed-loop system in feedback interconnection form

Closed-loop system stability will be investigated in the
sense of boundedness and therefore the dynamics of θ1
and θ2 can be omitted. This is because sin (θi) is bounded
independent from θi and therefore θ1 and θ2 can be con-
sidered as two time varying signals for the stability analysis.
However, the frequency dynamics, although omitted from the
stability analysis, are very important for the existence of the
equilibrium point as already mentioned in [17].

As a result, the plant system is given in the form:

M̃ ˙̃x =
(
J̃ (x̃, µ(t))− R̃

)
x̃+ G̃y2, (15)

y1 =
[
i1 i2 vo

]T
(16)

while the controller system is given in the form:
Ė1

Ėq1
Ė2

Ėq2

 =

[
A1 (y1) 02×2
02×2 A2 (y1)

]
E1

Eq1
E2

Eq2

 , (17)

y2 =

[ √
2E1 sin (θ1(t))√
2E2 sin (θ2(t))

]
(18)

with

A1 (y1) =

[
0 φ̇1
−φ̇1 0

]
, A2 (y1) =

[
0 φ̇2
−φ̇2 0

]
.

Now, we proceed with the following proposition which
shows the stability of the closed-loop system in the sense
of boundedness.

Proposition 1: The closed-loop system of Figure 3 with
the plant system given by (15)-(16) and the controller system
given by (17)-(18), is stable and the closed-loop system
solution xcl (t) is bounded for all t ≥ 0.

Proof: The main task is to prove boundedness of the
closed-loop system solution, thus the analysis will be con-
ducted in L∞ space. We investigate initially the plant system
dynamics given by (15) or equivalently (3) by considering
the following Lyapunov function candidate:

V (x̃) =
1

2
x̃T M̃x̃. (19)

Then the time derivative of V is calculated as:

V̇ = −x̃T R̃x̃+ x̃T G̃u

= −R1i
2
1 −R2i

2
2 −

rC1 + rC2

rC1rC2
v2o − wTRw + x̃T G̃u

≤ −a ‖x̃‖2 ∀ ‖x̃‖ > 1

λmin {R}
‖u‖ (20)

where a is a positive constant and λmin {R} is the minimum
eigenvalue of R. Since the Lyapunov function V is radially
unbounded, then inequality (20) implies that the plant system
is input-to-state stable (ISS) [21] providing:

‖x̃(t)‖≤β (‖x̃ (0)‖ , t) +
1

λmin {R}
sup

0≤τ≤t
‖u (τ)‖ (21)

where β is a class KL function.
If one considers the unforced plant system (u = 0), then

assuming the same Lyapunov function candidate given from
(19), the global exponential stability at the origin can be
easily derived and it also holds uniformly since the bounded
time-varying signal vector µ(t) does not affect the analysis.
By combining (16) and (21), it yields that there exist non-
negative constants γplant and βplant such that

‖y1τ‖L∞ ≤ γplant ‖y2τ‖L∞ + βplant (22)

for all y2 ∈ L2 and τ ∈ [0,∞) and as a result the plant
system is finite-gain L∞ stable with gain γplant [21].

Now, by investigating the controller system (17)-(18), due
to the matrix diagonal structure, one can investigate every
controller subsystem (E1−Eq1, E2−Eq2) separately where
it is considered that y1 ∈ L3.

Let’s begin by investigating the system with E1 − Eq1.
Considering the Lyapunov function candidate given by (9)
and following the analysis described in subsection III-A,
it yields that Ei and Eqi are bounded in the set [−Vi, Vi]
for every bounded input y1, i.e. there exists non-negative
constant β1 such that∥∥∥∥ E1τ

Eq1τ

∥∥∥∥
L∞
≤ β1 (23)

Since the bound of the states depends only from the initial
condition Eqi0 and not from the bound of the input y1,
inequality (23) can be written in the form of (22) with zero
gain. Therefore, the special structure of the controller proves
that the system with E1 −Eq1 is finite-gain L∞ stable with
zero gain.

A similar analysis can prove that the controller subsystem
E2 − Eq2 is also finite-gain L∞ stable with zero gain. As
a result, there exists a non-negative constant βcontrol such
that:

‖y2τ‖L∞ =

∥∥∥∥ √2E1τ sin (θ1(t))√
2E2τ sin (θ2(t))

∥∥∥∥
L∞
≤
√

2

∥∥∥∥ E1τ

E2τ

∥∥∥∥
L∞

≤ βcontrol (24)

which proves that the controller system (17)-(18) is also
finite-gain L∞ stable with gain γcontrol = 0. Then ac-
cording to the small-gain theorem [21], it holds true that
γplantγcontrol < 1 and as a result, since no other external
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inputs are applied on the system (Figure 3), the closed-loop
system solution is bounded.

It should be noted that in many load sharing applications,
the measuring and processing of the real and reactive powers
Pi and Qi are obtained through low-pass filters [16]. There-
fore, it is important to investigate whether the existence of
these filters affects the closed-loop system stability analysis.
This is discussed in the following remark.

Remark 1: Low-pass filters are always finite-gain L∞
stable systems with a finite gain γfilter and they can be
represented as a series connection of the controller system
in the feedback loop in Figure 3. Since the series connection
of two L∞ stable systems is also L∞ stable with finite
gain γfilterγcontrol and the controller has zero gain, then
obviously the stability analysis is not affected by the filters
used.

IV. SIMULATION RESULTS

In order to verify the BDC operation, two single-phase
inverters operated in parallel are considered. Each inverter
is powered by a 400V DC voltage source and the power
ratings are S1 = 0.5kV A and S2 = 1kV A for inverters
1 and 2 respectively. It is expected that P2 = 2P1 and
Q2 = 2Q1. Both inverters operate in a switching frequency
of 15kHz and the line frequency of the system is 50Hz.
The rated voltage of the inverters is E∗ = 230V and
Ke = 10. The filter inductor is L1 = L2 = 2.2mH with a
parasitic resistance R1 = R2 = 0.3Ω and the filter capacitor
C1 = C2 = 10µF with parasitic resistance rC1 = rC2 =
100MΩ. According to [23], the desired voltage drop ratio
is chosen niS

∗
i

KeE∗
= 0.25% and the frequency drop ratio is

chosen miS
∗
i

ω∗ = 0.1%. Therefore, the droop coefficients are
calculated as n1 = 0.0115, n2 = 0.0057, m1 = 6.2832·10−4

and m2 = 3.1416 · 10−4. Assuming a technical requirement
that permits the inverter voltage not to exceed the rated
voltage by more than 20% at any time, parameter Vi is
chosen equal to 1.2E∗ = 276V , while c is chosen as
c = 0.01.

Two different scenarios are illustrated with respect to the
load structure. In the first case, the load is a 57Ω resistor
(linear load), while in the second case a diode rectifier (non-
linear load) is considered, loaded by a capacitor CL =
800µF and a resistor RL = 100Ω. In the ac side, a boosting
inductor is used with LL = 2.2mH and a parasitic resistance
rL = 0.3Ω. The load can be a controllable rectifier as noted
in [22], where it is clear that the dynamic load equations
satisfy (2). In this work, for simplicity, a diode rectifier is
considered which represents a non-linear load as shown in
Figure 4. In each scenario, the RDC, as proposed in [15], is
compared with the BDC analyzed in the present work.

Figure 5 illustrates the time response of the paralleled
inverters system with a linear load for the RDC and the BDC
case. Comparing Figure 5a with Figure 5b and Figure 5c with
Figure 5d, it is clear that both controllers achieve precise
sharing of the real and the reactive power respectively,
proportional to the inverters ratings. This underlines their
advantage with respect to the conventional droop control

ov

Lr LL
Li

LC LR

+
+

−
−

Fig. 4: Non-linear load

techniques. As it can be observed in Figures 5a-5d, the BDC
achieves faster regulation at the desired steady-state values
due to the controller parameter c. At steady-state values,
the BDC performance coincides with the RDC as it can
be verified from Figure 5e, thus verifying the fact that the
proposed method keeps the RDC theory intact. Figure 5f
shows the response of the controller states E1 and Eq1 on
E1 − Eq1 plane where it is clear that they travel on the
circle with center the origin and radius equal to V1 = 276V
until they finally converge to the desired steady-state values
corresponding to a specific point on the circle. This verifies
the controller operation as described in subsection III-A and
consequently the stability analysis presented in subsection
III-B.

Simulation results for the case of the non-linear load are
presented in Figure 6. Both the RDC and the BDC share the
power accurately while the BDC produces again a bounded
performance according to the theoretical investigation for the
non-linear load case as well.

V. CONCLUSIONS

In this paper, a bounded droop controller was proposed in
order to achieve accurate load sharing in paralleled inverters.
While maintaining the theory of the RDC, the BDC also in-
troduces a bounded characteristic for the control input which
is proven to stay within a predefined range. An extended
analysis was presented to certify that the proposed bounded
control scheme guarantees the stability of the closed-loop
system independently from the type of the load (linear or
non-linear). Extended simulation results suitably verified the
proposed BDC design approach compared to the RDC.
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