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Abstract—The uncertainty and disturbance estimator (UDE)-
based control is a robust control method, which is proposed as a
replacement of the time-delay controller (TDC). With the filter
design in the UDE-based controller, the challenging problem of
designing a robust controller is converted into designing a filter.
In this paper, a bounded UDE-based control is developed to deal
with systems subject to uncertainties, disturbances and input
constraints. The bounded controller output is achieved through
nonlinear Lyapunov analysis, and an additional time-varying
variable is introduced into the error dynamics to naturally avoid
the integrator windup. The boundedness design is embedded
into the existing UDE framework to form a bounded UDE-based
controller without integrator windup via a simple structure
and clear guidelines of parameter selections. Both theoretical
analysis and simulation studies are provided to validate the
proposed design.

Index Terms—Uncertainty and disturbance estimator (UDE)-
based controller, bounded control, input constraint, anti-
windup.

I. INTRODUCTION

A robust control method, the uncertainty and distur-
bance estimator (UDE)-based controller, was proposed in
[1] to handle uncertainties and disturbances for linear time-
invariant (LTI) systems as a replacement of the time-delay
controller (TDC) [2]. Compared to the TDC [2], the UDE-
based controller does not need to measure the derivative of
the states, and no oscillations exist in control signal [1]. In the
UDE design, a filter is adopted to estimate and compensate
uncertainties and disturbances, then the challenging problem
of designing a robust controller is converted into the design of
a filter. In recent years, the UDE-based control demonstrates
excellent performances in broad practical applications, e.g.,
variable-speed wind turbine control [3], solar system con-
trol [4], current control for permanent-magnet synchronous
motor (PMSM) drives [5], power electronics control [6]–[9],
quadrotors [10], and robot manipulator tracking [11], etc. The
idea of UDE is also extended to the sliding-mode control
[12], [13]. Some further theoretical work about the UDE-
based control is conducted in [14]–[17]. A two-degree-of-
freedom nature of the UDE-based controller is disclosed in
[14]. A rough first-order plus time delay (FOPDT) model is
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introduced into the UDE-based controller in [15] to handle
apparent lag and time delay. The asymptotic reference track-
ing and disturbance rejection of the UDE-based controller is
achieved in [16] based on the internal model principle. The
tradeoff between the tracking and disturbance rejection under
finite bandwidth constraints is investigated in the UDE-based
controller [17].

The constraint of the system input or controller output is a
common problem in practice, due to the physical limitation
of the actuators or the stability requirement. The UDE-based
controller faces the same challenges. However, it is not an
easy task to design the boundedness for the UDE-based
controller, as it includes the integral terms to eliminate the
tracking error. If a saturation unit is simply applied to the
UDE-based controller, this often leads to the instability due to
the problem of the integrator windup [18], [19]. To overcome
this issue, the anti-windup design [19] is usually adopted
for the controllers with integral property, but this still can
not guarantee system stability in the original form or require
additional knowledge of the system structure and parameters
[18], [20]. Recently, a bounded integral controller (BIC) is
proposed in [18] to handle input constraint with integral
control, which autonomously provides the boundedness of
the controller output without any switches. The BIC is further
applied to many applications, e.g. the bounded voltage and
frequency of virtual synchronous machines [20], bounded
droop controller [21], and solar systems [4]. Though the
BIC can handle both input constraint and integrator windup
simultaneously, its robust performance is still limited by
the single integral control. Moreover, the bounded-input
bounded-output (BIBO) stability of original system is re-
quired for the BIC.

Motivated by the BIC in [18], a boundedness design
is proposed in this paper for the conventional UDE-based
controller to deal with input constraints. The boundedness of
the final controller output is investigated through nonlinear
Lyapunov analysis. With an additional time-varying variable
introduced into the error dynamics, the dynamic integral
gain of the modified UDE-based controller is achieved. The
integral property will converge to zero, when the controller
output converges to its limits, which naturally avoids the in-
tegrator windup subject to the input constraint. Compared to
the existing anti-windup designs using the auxiliary systems
[22], [23], the proposed boundedness design is embedded
into the conventional UDE structure, and the whole controller
becomes a bounded UDE-based controller. Compared to
the conventional UDE-based controller, only two additional
design parameters are introduced in the boundedness design.
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TABLE I
FILTER DESIGN FOR THE UDE-BASED CONTROLLER

Gf
1

1−Gf (s)

sGf (s)

1−Gf (s)

Gf1(s) =
a0

s+a0
1 + a0

s
a0

Gf2(s) =
a0

s2+a1s+a0
1 + 1

s
· a0
s+a1

a0
s+a1

Gf3(s) = 1− s(s2+ω2
0)

(s+a0)(s2+a1s+ω2
0)

1 + a0
s

+
a1(s+a0)

s2+ω2
0

a0 + a1 +
a1(a0s−ω2

0)

s2+ω2
0

This bounded UDE-based controller inherits the merits of the
conventional UDE method with a simple structure and clear
guidelines of parameter selections, and the BIBO assumption
in [18] is relaxed.

II. PROBLEM FORMULATION

A. Overview of the UDE-based controller

Consider a class of LTI systems

ẋ = Ax+ f(x) +Bu(t) + d(t) (1)

where x(t) = [x1, x2, ..., xn] ∈ Rn is the system state,
u(t) ∈ R is the system input, A ∈ Rn×n is the known
system matrix, B ∈ Rn is known control vector, f(x) ∈ Rn
is nonlinear part or unknown dynamics, and d(t) ∈ Rn is
the bounded external disturbance. f(x) is assumed with

‖f(x)‖ ≤ F ‖x‖ (2)

where ‖·‖ denotes the Euclidean norm, F is a positive
constant. Then, a stable reference model is selected as

ẋm(t) = Amxm(t) +Bmc(t) (3)

where xm(t) ∈ Rn is the reference state vector, c(t) =
[c1, c2, ..., cr] ∈ Rr is a piecewise continuous and uniformly
bounded command for the reference model, Am ∈ Rn×n and
Bm ∈ Rn×r are selected to meet the desired specification.

The objective is to design the control law u(t) such that
the state x(t) can asymptotically track its reference xm(t),
where the tracking error

ex(t) = xm(t)− x(t) (4)

satisfies the following error dynamics

ėx = (Am +K)ex (5)

where K ∈ Rn×n is a constant error feedback gain matrix
and (Am +K) should be Hurwitz.

Combining (1)-(5), there is

Amxm +Bmc−Ax−Bu− f(x)− d = (Am +K)ex.

The control law u(t) is designed as

Bu = Amxm +Bmc−Ax− ud − (Am +K)ex (6)

where the lumped term

ud = f(x) + d

consists of the unknown term f(x) and disturbance d(t).
According to the system dynamics (1), ud can be written as

ud = f(x) + d = ẋ−Ax−Bu.

Following the UDE procedures in [1], ud can be approxi-
mated as

ûd = L−1 {Gf (s)} ∗ ud
= L−1 {Gf (s)} ∗ (ẋ−Ax−Bu)

where ∗ is the convolution operator and Gf (s) is the UDE
filter with both strictly proper stable manner and appropriate
bandwidth to cover the spectrum of ud. L−1 means inverse
Laplace transformation. Replacing ud with ûd in (6), there
is

Bu = Amxm +Bmc−Ax− (Am +K)ex

−L−1 {Gf (s)} ∗ (ẋ−Ax−Bu).

Then, the final UDE-based control law is formulated as

u = B+

[
−Ax+ L−1

{
1

1−Gf (s)

}
∗ [Amxm +Bmc− (Am +K)ex]

−L−1

{
sGf (s)

1−Gf (s)

}
∗ x
]

(7)

where B+ = (BTB)−1BT . The scheme of the conventional
UDE-based controller is shown in Fig. 2.

B. Integral property in the UDE-based controller

In the UDE-based controller (7), there are two terms
involving the filter, 1

1−Gf (s)
and sGf (s)

1−Gf (s)
. As pointed out

in [14], [16], the filter design plays a very important role to
achieve the good performances of the UDE-based controller,
e.g., asymptotic reference tracking and disturbance rejection.
Based on the internal model principle [16], the low-pass
filter with Gf (0) = 1 is required to handle step disturbance
and step reference. Table I lists three frequently-used UDE
filters, Gf1(s) in [1], [3], [4], Gf2(s) in [6], and Gf3 in [7],
[16]. It is interesting to notice that the integral property is
included in the 1

1−Gf (s)
term to provide good steady-state

performances. However, the sGf (s)
1−Gf (s)

term does not include
the integral property due to the s term in the numerator.

Though the integral property in 1
1−Gf (s)

can handle step
disturbance and step reference, it might cause the integrator
windup, if the system input is subject to a constraint. The
anti-windup designs [19] are commonly adopted to deal
with this issue, however, system structure and parameters
are usually required to guarantee the closed-loop system
stability [18], [20]. Furthermore, anti-windup designs with
auxiliary systems [22], [23] will become very complex with
the number of design parameters increasing, if the system
order increases. Is it possible to have a simple bounded
design for the UDE-based controller to handle the integrator
windup and to guarantee the closed-loop system stability?

2977



A

Reference Model
Plant(3)

Fig. 1. The scheme of the conventional UDE-based controller [1].

A

Reference Model Boundedness design
Plant(3) (10) and (11)

Fig. 2. The scheme of the proposed bounded UDE-based controller.

III. BOUNDED UDE-BASED CONTROLLER

Inspired by the BIC in [18], a boundedness design is
proposed for the UDE-based controller to handle input
constraint without integrator windup. Unlike the auxiliary
system design, this boundedness design is embedded into
the conventional UDE structure to result in a bounded UDE-
based controller. The stability of the closed-loop system is
investigated.

A. Design of the bounded UDE-based controller

Instead of the error dynamics in equation (5), a new error
dynamics is designed as

ėx = k0(t)(Am +K)ex (8)

where 0 < k0(t) ≤ 1 is an additional time-varying variable to
be determined. Following the same UDE design procedures
in Section II, the new modified UDE-based control law can
be obtained as

un = B+

[
−Ax+ L−1

{
1

1−Gf (s)

}
∗ [Amxm +Bmc− k0(Am +K)ex]

−L−1

{
sGf (s)

1−Gf (s)

}
∗ x
]
. (9)

Inspired by the BIC in [18], a boundedness design is added
to (9) to regulate the final controller output ub(t) inside a
given range of (−umax, umax),

u̇b = −k1ub
(

u2
b

u2
max

+ k20 − 1
)
− k2k20(ub − un) (10)

k̇0 = −k1k0
(

u2
b

u2
max

+ k20 − 1
)

+ ubk2k0
u2
max

(ub − un) (11)

where k1 > 0 and k2 > 0 are positive constants. k0(t) is
further introduced into new error dynamics (8).

Lemma 1. Through the boundedness design in (10) and (11),
the final controller output ub(t) is regulated within a given
range, i.e. ub ∈ (−umax, umax).

Proof: Consider the following Lyapunov function can-
didate

V =
u2b
u2max

+ k20.

Taking the derivative of V along (10) and (11), it yields

V̇ =
2ub
u2max

u̇b + 2k0k̇0

= −2k1u
2
b

u2max

(
u2b
u2max

+ k20 − 1

)
− 2ubk2k

2
0

u2max
(ub − un)

−2k1k
2
0

(
u2b
u2max

+ k20 − 1

)
+

2ubk2k
2
0

u2max
(ub − un)

= −2k1

(
u2b
u2max

+ k20

)(
u2b
u2max

+ k20 − 1

)
= −2k1V

2 + 2k1V. (12)

Then, solving (12) gives

V (t) =
e2k1tV (0)

e2k1tV (0)− V (0) + 1

=
1

1− e−2k1t(1− 1
V (0) )

. (13)

Through the initial design with k0(0) = 1, and ub(0) = 0,
i.e., V (0) = 1, then

V (t) = 1, ∀ t ≥ 0.

Consequently, it always holds that u2
b

u2
max

+k20 = 1. So, ub(t)
is kept within a given range of (−umax, umax).

The scheme of the proposed bounded UDE-based con-
troller is shown in Fig. 2. Compared to the conventional
UDE-based controller [1], shown in Fig. 1, it can be seen
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Fig. 3. An illustration of the bounded controller output ub and the additional
variable k0 with the proposed bounded UDE-based controller (10) and (11).

that the boundedness design is well embedded into the
conventional UDE framework with a simple structure. Note
that if there are any numerical errors or parameter drifts in
V (t), V (t) will still converge to 1 with t→∞, according to
equation (13), and the rate of convergence can be adjusted
by the parameter k1. In this way, with the introduction of the
additional controller state k0(t), the controller states, ub(t)
and k0(t) will start and always remain on the ellipse

u2b
u2max

+ k20 = 1 (14)

which indicates that ub(t) is bounded in the given range
ub ∈ (−umax, umax), and k0 ∈ (0, 1], no matter how un(t)
in (9) changes. In the steady-state, u̇b(t) and k̇0(t) will be
regulated to 0 with zero tracking error. When u̇b = 0 and
k̇0 = 0, both controller states ub(t) and k0(t) will converge
to an equilibrium point (ube, k0e), as shown in Fig. 3.

Remark 2. With V (t) = 1, the boundedness design (10) and
(11) are reduced to

u̇b = −k2k20(ub − un)

k̇0 =
ubk2k0
u2max

(ub − un).

When the final controller output ub(t) is not close to the
maximum value and k0(t) does not converge to 0, ub(t)
will converge to un(t), and the rate of convergence can be
adjusted by the parameter k2. If ub(t) does not converge
to un(t), the non-zero u̇b will drive ub to un. So, the
parameter k2 should be well designed and big enough to
cover all the effective bandwidths of the modified controller
output un. When ub(t) is close to the maximum value,
i.e., ub(t) → ±umax, the variable k0(t) will converge to
0. Then, the term L−1

{
1

1−Gf (s)

}
∗ [k0(Am +K)ex] with

integral property in (9) will converge to zero as k0(t) → 0.
This means that the integral property in (9) slows down and
converges to zero, when ub(t) goes to the limits, which can
naturally prevent the integrator windup problem.

Compared to the conventional UDE-based controller [1],
this bounded UDE-based controller (9), (10) and (11) only
introduce two additional design parameters, k1, and k2, and
both of them have clear selection guidelines.

B. Stability analysis

Theorem 3. Consider the closed-loop system
shown in Fig. 2. Given any compact set Ωx ={
x(t) | ‖x(t)‖2 < q, q > 0

}
, if the initial state x(0)

is within this set Ωx, and the system input within the range
u ∈ (−umax, umax) is capable to stabilize the system (1)
within the set Ωx, i.e., k0(t) does not converge to 0, the
closed-loop system is stable in the sense of boundedness.

Proof: As shown in Fig. 2, the boundedness design
(10) and (11) and the plant can be combined together as
a new plant (inside the dashed box) with the system input
un(t), where both x(t) and k0(t) are system states. Then, the
boundedness design can be treated as a disturbance ∆ ∈ Rn
for the new plant as

ẋ = Ax+ f(x) +Bun(t) + d(t) + ∆ (15)

where ∆ = B(ub − un). And, the lumped term becomes
ud = f(x) + d+ ∆.

Consider the following Lyapunov function candidate

Vx(x) = xTx.

Taking the derivative of Vx(x) along with the new plant (15)
and the modified UDE-based control law (9), there is

V̇x(x) = ẋTx+ xT ẋ

=
[
xTAT + fT (x) + uTnB

T + dT + ∆T
]
x

+xT [Ax+ f(x) +Bun + d+ ∆]

= k0x
T (ATm +KT +Am +K)x

+ (1− k0)
(
xTmA

T
mx+ xTAmxm

)
−k0

(
xTmK

Tx+ xTKxm
)

+ cTBTmx+ xTBmc

+L−1 {1−Gf (s)} ∗
[
fT (x)x+ xT f(x)

]
+L−1 {1−Gf (s)}
∗
[(
dT + ∆T

)
x+ xT (d+ ∆)

]
≤ k0λmax (Q) ‖x‖2 + 2 (1− k0) ‖Am‖ ‖xm‖ ‖x‖

+2k0 ‖K‖ ‖xm‖ ‖x‖+ 2 ‖Bmc‖ ‖x‖
+L−1 {1−Gf (s)} ∗ (2F ‖x‖2)

+L−1 {1−Gf (s)} ∗ [2 ‖x‖ (‖d‖+ ‖∆‖)]
≤ [k0λmax (Q) + 2F ] ‖x‖2 + 2ζ ‖x‖ (16)

where F is defined in (2), Q = ATm + KT + Am + K is
negative semi-definite with the Hurwitz matrix (Am +K),
λmax (Q) < 0 is the maximum eigenvalue of Q, and ζ =
(1− k0) ‖Am‖ ‖xm‖+k0 ‖K‖ ‖xm‖+‖Bmc‖+‖d‖+‖∆‖.
Within the set Ωx, ‖∆‖ is bounded, according to Remark 2.
Therefore, ζ has an upper bound p > 0, which is a function
of q.

By applying the Young’s inequality to (16), there is

V̇x(x) ≤
[
k0λmax (Q) + 2F + ε2

]
‖x‖2 +

ζ2

ε2

≤ −λ1Vx(x) +
p2

ε2
(17)

where λ1 = −
[
mint(k0)λmax (Q) + 2F + ε2

]
> 0, and ε >

0 is a tuning coefficient to determine the value of p2

ε2 . The
proper error feedback gain matrix (Am +K) can be chosen
to fulfill λ1 > p2

qε2 , if k0(t) does not converge to 0. Then,
V̇x(x) < 0 when Vx(x) ≥ q. In other words, the set Ωx

2979



is an invariant set. Therefore, ‖x(t)‖2 < q for all t > 0 if
‖x(0)‖2 ≤ q. The closed-loop system is stable in the sense
of boundedness.

It is worth noting that the closed-loop system still could
be stable when k0(t) converges to 0, if the plant (1) is BIBO
stable, according to [18].

C. Performance analysis

For the new plant (15) and the modified UDE-based
control law (9), as illustrated in Fig. 2, the performances
of the tracking error will be analyzed.

When the UDE filter is used to estimate the uncertain term
ud, and ud is replaced with ûd for the modified UDE-based
control law (9), the actual error dynamics (8) becomes

ėx = k0(t)(Am +K)ex − ũd (18)

where ũd , ud − ûd is the estimation error of the lumped
term ud = f(x) + d+ ∆. The estimation error is

ũd = L−1 {1−Gf (s)} ∗ ud. (19)

Consider the following Lyapunov function candidate

Ve(ex) = eTx ex.

Then,

V̇e(ex) = k0e
T
xQex − ũTd ex − eTx ũd

≤ k0λmax (Q) ‖ex‖2 + 2 ‖ũd‖ ‖ex‖ (20)
≤ [k0λmax (Q) + 1] ‖ex‖2 + ‖ũd‖2

≤ −λ3Ve(ex) + λ4 (21)

where λ3 = − [mint(k0)λmax (Q) + 1], λ4 =

maxt
(
‖ũd‖2

)
> 0. Then, solving (21) gives

0 ≤ Ve(ex) ≤ Ve(ex(0))e−λ3t +
λ4
λ3

(1− e−λ3t). (22)

Therefore,

0 ≤ ‖ex‖ ≤
√
‖ex(0)‖2 e−λ3t +

λ4
λ3

(1− e−λ3t).

If k0(t) does not converge to zero, the error feedback gain
matrix (Am+K) can be well designed to fulfill λ3 > 0. The
term ‖ex(0)‖2 e−λ3t will gradually decay and converge to
zero, and the term λ4

λ3
(1−e−λ3t) will gradually increase and

converge to λ4

λ3
, when t → ∞. Therefore, ‖ex‖ will finally

converge to
√

λ4

λ3
. The value of

√
λ4

λ3
can be adjusted through

the design of the error feedback gain matrix (Am+K). If the
filter Gf (s) is well designed [16] as a strictly proper stable
filter with unity gain and appropriate bandwidth to cover the
spectrum of the lumped term ud(t), the estimation error (19)
will be close to zero, so as λ4. Then, the tracking error ex
will converge to zero.

Note that the steady-state performances cannot be guar-
anteed if k0(t) converges to 0, even though the closed-loop
system is stable given the BIBO stability of the plant (1).

TABLE II
CONTROL PARAMETERS

Parameters Values Parameters Values
am, bm 2 k1 2000
am + k 2 k2 2000
Gf (s)

2
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Fig. 4. Simulation results with the bounded UDE-based controller (left col-
umn) and with the conventional UDE-based controller [1] plus a saturation
unit (UDE+Sat) (right column).

IV. SIMULATION STUDIES

In order to verify the proposed boundedness design for the
UDE-based controller, a numerical simulation is provided.
Consider the following system:

ẋ = ax+ Fx+ u+ d

where a = −1, F = −1, and d is a step disturbance with
d = −0.25 applied at t = 60 s. The bounded system input is
required within the range of u ∈ (−4.5, 4.5). The reference
model is chosen as ẋm = −am + bmc, where c(t) is a
multiple step command with c = 1 at t = 0 s, c = 2.4
at t = 20 s, and c = 2 at t = 40 s. And the error dynamics is
designed as ė = −k0(t)(am + k)e. The control parameters
for the proposed bounded UDE-based controller (9)-(11) are
shown in Table II. How to choose parameters for the UDE
filter and the error dynamics in the UDE-based controller can
refer to [14], [16]. In order to show the advantages of the
proposed boundedness design, the conventional UDE-based
controller (7) [1] by adding a saturation unit is also provided
for the comparison.

The system responses are shown Fig. 4. Before t = 20 s,
both the proposed bounded UDE and the conventional UDE
plus a saturation unit have the same performances in refer-
ence tracking when the controller output is not constrained.
The tracking errors are almost zero at steady-state. When the
reference is changed to 2.4 at t = 20s, both controllers cannot
reach the reference target because of the input constraint.
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(a) Within time-domain (b) Within the ub − k0 ellipse

Fig. 5. The illustration of the controller states ub and k0 with the proposed boundedness design.

The tracking errors of both controllers are about 0.15 at
steady-state in Fig. 4(a) and (b). From Fig. 4(c), it shows
that the proposed bounded UDE can guarantee the input
constraint without any integrator windup, and un in equation
(9) stops increasing and converges to steady-state, because of
the effects from k0(t)→ 0. However, the conventional UDE
plus a saturation unit suffers from the integrator windup,
because of the integral property in the UDE-based controller.
After t = 40 s, the bounded UDE still can achieve reference
tracking quickly, whereas the conventional UDE plus a
saturation unit cannot achieve reference tracking till about
t = 50 s due to the effects of the integrator windup. After
t = 60 s, both controllers can reject the disturbance with
similar performances. Therefore, the proposed bounded UDE
control design can handle the input constraint without the
integrator windup. The controller states ub(t) and k0(t)
always remain on the ellipse, which is clearly illustrated
in Fig. 5, where the equilibrium points E1, E2, E3, and E4

represent the four steady-states of the system, at 5 s ∼ 20 s,
25 s ∼ 40 s, 45 s ∼ 60 s, and 65 s ∼ 80 s respectively.

V. CONCLUSION

In this paper, a boundedness design has been embed-
ded into the conventional UDE-based controller to form a
bounded UDE-based controller. An additional time-varying
variable has been introduced into the design of error dy-
namics to handle the integrator windup issue. The proposed
bounded UDE-based control has a simple structure with clear
guidelines of parameter selections. Both theoretical analysis
and simulation studies have demonstrated the effectiveness
of the proposed approach.
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