- INFO:

WHEN:	Friday $(02 / 12)$ at 10:00am	DURATION:	50 mins
PROBLEM COUNT:	Appropriate for a 50-min exam	BONUS COUNT:	At least one

- TOPICS CANDIDATE FOR THE EXAM:
* DEVORE 1.1: The Need for Probability \& Statistics; Data, Variables, Samples, Populations
* DEVORE 1.2: Frequency Tables, Histograms; Modality \& Skewness of Data, Outliers
* DEVORE 1.3: Measures of Center \& Rank: Mean, Median, Trimmed Mean, Percentiles, Quartiles, Hinges
* DEVORE 1.4: Measures of Spread: Range, Variance, Std Dev, IQR, IHR; Boxplots
* DEVORE 2.1: Sets, Sequences; Outcomes, Sample Spaces, Events; Unions, Intersections, Complements
* DEVORE 2.2: Probability Axioms \& Properties; Measures of Countable Sets; Equally Likely Outcomes
* DEVORE 2.4: Conditional Probability, Law of Total Probability, Bayes' Theorem
* DEVORE 2.5: Independence of Two Events
- TOPICS CANDIDATE FOR BONUS QUESTIONS: (Maximum Bonus Points Possible $=12$)
* DEVORE 2.3: Counting Tuples in Multi-Stage Experiments; Permutations, Combinations (entire section) * ?????
- TOPICS NOT COVERED AT ALL:
* Proofs of any kind
* DEVORE 1.1: Enumerative vs. Analytic Studies (pg 9-10), Collecting Data (pg 10)
* DEVORE 1.2: Dotplots (pg 13-15), Stem-and-Leaf Displays (pg 15-16)
* DEVORE 1.3: Mean of a finite population: $\mu=\frac{1}{N} \sum_{k=1}^{N} x_{k}$
* DEVORE 1.4: Deviations from Mean, Classification of Outliers, Std Error, Variance of a finite population
* DEVORE 2.2: Measures of 1-D, 2-D, and 3-D sets [Slide \#17 in 2.2 Slides]
* DEVORE 2.5: Mutual Independence of More than Two Events (pg 88)
* Any applications mentioned in other sections
- LOGISTICS:
- All you need to bring are pencil(s), eraser(s), calculator(s) \& your Raidercard.
- Clear your desk of everything except pencil(s), eraser(s) and calculator(s).
- Formula Sheet (next two pages) will be provided.
- Books, notes, notecards NOT PERMITTED.
- Mobile devices (phones, tablets, laptops, music, headphones, ...) are to be shut off and put away.
- Tissues will be furnished - for allergies, not for sobbing. No talking or cheating!
- When you turn in your exam, be prepared to show me your Raidercard if I don't recognize you.
- If you ask to use the restroom during the exam, either hold it or turn in your exam for grading.
- ADVICE:
- Use the restroom before the exam, if needed.
- Do not be late to the exam.
- Review the slides, past homework, and perhaps even work some similar problems in the textbook.
- Know how the use all formulas on the provided Formula Sheet (next two pages)
- Use flashcards to aid in memorization of hard formulas.
- Study for the exam together in groups.
- If you need more review, show up to the last-minute help session Thursday evening (02/11).
- SHOW APPROPRIATE WORK! Attempt bonus question(s).
- SORTED SAMPLES:

Then the corresponding sorted sample is $\quad x: x_{(1)}, x_{(2)}, \ldots, x_{(n-1)}, x_{(n)}$

Given a sample with n data points
where the data points are sorted in ascending order: $\quad x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n-1)} \leq x_{(n)}$

- ROUNDING (COMPACT NOTATION): It is convenient to have mathematical notation for rounding numbers.

$$
\text { Always Round Up: } \quad\lceil 3\rceil=3 \quad\lceil 3.1\rceil=4 \quad\lceil 3.5\rceil=4 \quad\lceil 3.9\rceil=4
$$

- MEAN OF A SAMPLE: The mean, denoted \bar{x}, is the average of the sample.

$$
\bar{x}:=\frac{1}{n} \sum_{k=1}^{n} x_{k}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- MEDIAN OF A SAMPLE: The median, denoted \widetilde{x}, is the middle value of the sorted sample.

$$
\widetilde{x}:=\left\{\begin{array}{cl}
x_{([n+1] / 2)} & , \text { if } n \text { is odd } \\
\frac{x_{(n / 2)}+x_{(1+[n / 2])}}{2} & , \text { if } n \text { is even }
\end{array}\right.
$$

- TRIMMED MEAN OF A SAMPLE: The $p \%$ trimmed mean, $\bar{x}_{t r(p \%)}$, is the mean of the dataset resulting from eliminating the smallest $p \%$ and largest $p \%$ of the sorted sample.
e.g. $\quad \bar{x}_{t r(10 \%)}:=$ Mean of sorted sample x with largest $10 \% \&$ smallest 10% removed
- PERCENTILES OF A SAMPLE: The p-th percentile, denoted $x_{p / 100}$, is the smallest data point such that $p \%$ of the sample is less than or equal to that data point:

$$
\begin{aligned}
x_{p / 100}:= & x_{(\lceil n p / 100\rceil)}=\left(\left\lceil\frac{n p}{100}\right\rceil\right) \text {-th data point in sorted sample } \\
& \text { e.g. } \quad x_{0.37} \equiv\left(37^{t h} \text { percentile of sample } x\right) \\
& \text { e.g. } \quad y_{0.98} \equiv\left(98^{t h} \text { percentile of sample } y\right)
\end{aligned}
$$

- QUARTILES OF A SAMPLE:

$$
\begin{aligned}
& x_{Q 1}:=x_{0.25} \equiv 1^{\text {st }} \text { quartile }\left(25^{t h} \text { percentile }\right) \text { of sample } x \\
& x_{Q 3}:=x_{0.75} \equiv 3^{\text {rd }} \text { quartile }\left(75^{t h} \text { percentile) of sample } x\right.
\end{aligned}
$$

- HINGES OF A SAMPLE:

The lower hinge, $x_{L H}$, is the median of the lower half of sorted sample.
The upper hinge, $x_{U H}$, is the median of the upper half of sorted sample.

DEVORE 1.4

- RANGE OF A SAMPLE: Sample range, denoted x_{R}, is the difference between largest \& smallest data points:

$$
x_{R}:=x_{(n)}-x_{(1)}
$$

- VARIANCE OF A SAMPLE: Sample variance, denoted s^{2} or s_{x}^{2}, is the following:

$$
s^{2}=\frac{S_{x x}}{n-1} \quad \text { where } \quad S_{x x}=\sum_{k=1}^{n} x_{k}^{2}-\frac{1}{n}\left(\sum_{k=1}^{n} x_{k}\right)^{2}
$$

- STANDARD DEVIATION OF A SAMPLE: Standard deviation, denoted s or s_{x}, is the square root of variance:
- INTERQUARTILE RANGE (IQR):
$x_{I Q R}:=x_{Q 3}-x_{Q 1}$
- INTERHINGE RANGE (IHR):
$x_{I H R}:=x_{U H}-x_{L H}$
- BASIC TERMINOLOGY: The outcomes $\omega_{1}, \omega_{2}, \ldots$ of an experiment are the different possible results.

The sample space Ω of an experiment is the set of all possible outcomes.
An event E is a subset of the sample space: $\quad E \subseteq \Omega$

- THE EMPTY SET: The empty set, \emptyset, is the event with no outcomes in it.
- UNIONS, INTERSECTIONS, COMPLEMENTS OF EVENTS (PROPERTIES): Let $A, B, C \subseteq \Omega$. Then:

$$
\begin{gathered}
\left(A^{c}\right)^{c}=A, \quad A \cup B=B \cup A, \quad A \cap B=B \cap A \\
(A \cup B) \cup C=A \cup(B \cup C), \quad(A \cap B) \cap C=A \cap(B \cap C) \\
(A \cup B)^{c}=A^{c} \cap B^{c}, \quad(A \cap B)^{c}=A^{c} \cup B^{c} \\
A \cup \emptyset=A, \quad A \cap \emptyset=\emptyset, \quad \Omega^{c}=\emptyset, \quad \emptyset^{c}=\Omega \\
(A \cup B) \cap C=(A \cap C) \cup(B \cap C), \quad(A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{gathered}
$$

- MUTUAL EXCLUSIVITY OF TWO EVENTS: Events E, F are mutually exclusive (or disjoint) if $E \cap F=\emptyset$
- MUTUAL EXCLUSIVITY OF THREE EVENTS: Events E, F, G are mutually exclusive (or pairwise disjoint) if:

$$
E \cap F=\emptyset \text { and } E \cap G=\emptyset \text { and } F \cap G=\emptyset
$$

- MUTUAL EXCLUSIVITY OF MANY EVENTS: Events $E_{1}, E_{2}, \ldots, E_{n}$ are mutually exclusive (or pairwise disjoint) if they have no outcomes in common: $\quad E_{i} \cap E_{j}=\emptyset$ for $i \neq j$

DEVORE 2.2

- CHAIN OF UNIONS:

$$
\bigcup_{k=1}^{n} A_{k}=A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n} \quad \bigcup_{k=1}^{\infty} A_{k}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots
$$

- AXIOMS \& PROPERTIES OF PROBABILITY: Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment

Let $E_{1}, E_{2}, E_{3}, \ldots$ be an infinite collection of pairwise disjoint events. Then:

$$
\begin{gathered}
\mathbb{P}(E) \geq 0, \quad \mathbb{P}(\Omega)=1, \quad \mathbb{P}(\emptyset)=0, \quad \mathbb{P}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(E_{k}\right), \quad \mathbb{P}\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mathbb{P}\left(E_{k}\right) \\
\mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E), \quad \mathbb{P}(E) \leq 1, \quad \mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)
\end{gathered}
$$

- INCLUSION-EXCLUSION: $\mathbb{P}(E \cup F \cup G)=\mathbb{P}(E)+\mathbb{P}(F)+\mathbb{P}(G)-\mathbb{P}(E \cap F)-\mathbb{P}(E \cap G)-\mathbb{P}(F \cap G)+\mathbb{P}(E \cap F \cap G)$
- MEASURE OF A SET: The measure of a countable set is $|E|:=(\#$ of elements in $E), \quad|\emptyset|:=0$
- PROBABILITY WITH EQUALLY LIKELY OUTCOMES:

Let Ω be the sample space of an experiment with equally likely outcomes. Let E be an event of the experiment. Then the probability of event E occurring is defined as: $\quad \mathbb{P}(E)=\frac{|E|}{|\Omega|}$

DEVORE 2.4

- CONDITIONAL PROBABILITY: Let $E, F \subseteq \Omega$ be two events such that $\mathbb{P}(F)>0$.

Then the conditional probability of E given that F has occurred is: $\quad \mathbb{P}(E \mid F):=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$

- PARTITIONS: Events E_{1}, \ldots, E_{k} partition sample space Ω if they are pairwise disjoint AND $\bigcup_{i=1}^{k} E_{i}=\Omega$
- LAW OF TOTAL PROBABILITY: Let $E_{1}, \ldots, E_{k} \underline{\text { partition }} \Omega$. Then $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \cap E_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$
 $\sum_{i=1}^{k} \mathbb{P}\left(F \cap E_{i}\right) \quad \sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$

DEVORE 2.5

- INDEPENDENCE OF TWO EVENTS: Two events E, F are independent if $\mathbb{P}(E \mid F)=\mathbb{P}(E)$
- INDEPENDENCE OF TWO EVENTS: Two events E, F are independent if and only if $\mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F)$

