OVERVIEW OF ENGINEERING STATISTICS [DEVORE 1.1]

• DATASET (DEFINITION): Data (or a dataset) is a set of observations or measurements (called data points).

• THE NEED FOR STATISTICS: VARIATION IN DATA

Throughout history, people have collected **data** about certain characteristics of objects, phenomena and processes. Alas, **no real-world dataset has all data points of the** <u>exact same value</u>:

- Houses in a subdivision do <u>not</u> have the exact same price.
- US blockbuster films do <u>not</u> have an exact running time of 90 minutes.
- A collection of steel rods do <u>not</u> have the exact same tensile strength.
- Not all people answer a survey with the exact same set of responses.
- Not all gas stations in a city have the exact same price for unleaded fuel.
- Not all trees in a forest have the exact same branching.
- Not all cookies in a box produced in a factory are exactly the same size.

The data itself is overwhelming & provides little-to-no insight/info/conclusions!

So how to use the data to reliably draw useful conclusions? $~~ {\bf STATISTICS!!}$

- STATISTICS (DEFINITION): Statistics is the quantitative handling of data to draw useful conclusions.
- WHY DOES DATA INHERENTLY HAVE VARIATION: Because the world is immensely complex:
 - Humans are not 100% perfect.
 - Instruments never measure to 100% accuracy.
 - Materials/substances are never 100% pure.
 - Behaviours and processes never act in 100% isolation.
 - Future events can never be 100% predicted in advance. (see next slide)
- RANDOM PROCESSES (DEF'N): A random process is one whose outcome cannot be predicted a priori.

• THE NEED FOR PROBABILITY: UNCERTAINTY IN PROCESSES

Life is full of random processes whose outcome cannot be predicted ahead of time:

Gambling:	Flipping a Coin, Games of Chance (Blackjack, Roulette,)
Meteorology:	Weather Systems, Path of a Tropical Cyclone
Economics:	Stock Prices, Demand for Oil
Social Sciences:	Behaviour in People (e.g. fads)
Biology:	Behaviour of Infectious Disease
Engineering:	Instrumentation Errors, Noise in Signals
Physics:	Entropy, Heisenberg's Uncertainty Principle

If we can't predict the outcome, what's the next best thing?

Use **Probability** to determine the **likelihood** of a particular outcome!

• **PROBABILITY** (**DEFINITION**): **Probability** is the quantitative study of uncertainty.

(CONTINUES ON NEXT PAGE)

©2016 Josh Engwer – Revised January 20, 2016

OVERVIEW OF ENGINEERING STATISTICS [DEVORE 1.1]

• ESTABLISHING MEANINGFUL DATA: POPULATIONS

- A **population** is a well-defined set of \underline{all} objects with desired characteristic(s).
- A finite population has a finite number of objects.
- An **infinite population** has an infinite number of objects or is uncountable.
- A concrete population is a population that actually exists.
- A hypothetical population is a population that <u>cannot exist</u> but is still useful.
- **VARIABLES (DEFINITION):** A variable is a characteristic that may change among objects in a population.
 - A **numerical variable**'s possible values are <u>numbers</u>.
 - A categorical variable's possible values are <u>labels</u>.

• THE NEED FOR SAMPLES: ENORMOUS POPULATIONS

Unfortunately, most populations are vastly huge, which causes various issues:

- There are hundreds of millions of people in the US it takes too much time & money to poll every person!
- There are billions of cans of soda if taste-testers tested every can of soda, there would be no soda to sell!
- The fix to this intractable problem is to take a **sample** of the population:
- **SAMPLE (DEFINITION):** A **sample** is a subset of a population.

As it happens, most methods of statistics involve **samples**.

• EXAMPLES OF POPULATIONS, VARIABLES, AND SAMPLES:

POPULATION	POP. TYPE	VARIABLE	TYPICAL SAMPLE
All students	finite concrete	height (N)	$6.1', \ 3.9', \ 5.6', \ 4.0'$
		height (C)	Tall, Short, Tall, Short
		eye color (C)	Blue, Blue, Hazel, Brown
		total moves (N)	23, 20, 57, 89, 89, 9, 121
All possible	finite	stalemate? (C)	$\mathrm{No},\mathrm{No},\mathrm{Yes},\mathrm{No},\mathrm{No},\mathrm{Yes}$
chess games	hypothetical	stalemate? (C)	0, 0, 1, 0, 0, 1
		stalemate? (N)	0, 0, 1, 0, 0, 1

As shown above, some variables can either be numerical or categorical.

The choice in such a situation is usually determined by context.

• **TWO BRANCHES OF STATISTICS:**

Unfortunately, people want to learn about characteristics of entire populations, but a sample is a subset of a population, and by comparison is quite small!

The solution is a branch of Statistics, called **Statistical Inference**.

But inference involves describing the sample visually/numerically, which is a branch called **Descriptive Statistics**.

Since using samples to infer information about an entire population by its nature involves uncertainty,

Probability also plays a role in inference.

Finally, $\mathbf{Probability}$ can draw conclusions about a sample from a population.

- **STATISTICAL INFERENCE (DEFINITION): Statistical Inference** (or just **inference**) is the quantitative study of samples to draw conclusions of populations.
- **DESCRIPTIVE STATISTICS (DEFINITION): Descriptive Statistics** is the organization, summary, visualization and presentation of data that conveys useful information about the data.

^{©2016} Josh Engwer – Revised January 20, 2016

OVERVIEW OF ENGINEERING STATISTICS [DEVORE 1.1]

• UNIVARIATE & MULTIVARIATE DATA:

Univariate data involves observations/measurements w.r.t. <u>one variable</u>.
Bivariate data involves <u>simultaneous</u> measurements w.r.t. <u>two variables</u>.
Multivariate data involves <u>simultaneous</u> measurements w.r.t. many variables.

EXAMPLE UNIVARIATE SAMPLES:

– Student Heights (in f	t) – measured $01/01/2016$:	6.1, 3.9, 5.6, 4.0	
– Student Weights (in l	b) – measured $11/11/2015$:	$205,\ 135,183,141$	
– Student Eye Colors	- measured 10/10/2015:	Hazel, Blue, Brown, Haze	1

EXAMPLE BIVARIATE SAMPLE:

- Student Heights & Weights (in ft & lb) - measured 12/12/2015: (6.1, 197), (3.9, 136), (5.6, 187), (4.0, 141)

EXAMPLE MULTIVARIATE SAMPLE:

- Student Heights, Weights & Eye Colors – measured 12/12/2015:

(6.1, 197, Hazel), (3.9, 136, Blue), (5.6, 187, Brown), (4.0, 141, Hazel)

• PROBABILITY & STATISTICS COVERED IN THIS FIRST COURSE:

A 1^{st} course in Engineering Statistics (MATH 3342) covers:

Descriptive Statistics	(Chapter 1)
Probability	(Chapter 2)
Random Variables	(Chapters 3-4)
Central Limit Theorem	(Sections $5.3, 5.4$)
Point Estimation	(Chapter 6)
1-Sample Inference	(Chapters 7-8)
2-Sample Inference	(Chapter 9)

Moreover, only **univariate** data will be used.

Bivariate & multivariate data will <u>never</u> be considered in this course.

• PROBABILITY & STATISTICS NOT COVERED IN THIS FIRST COURSE:

A 2^{nd} course in Engineering Statistics (in your dept??) would cover:

Bivariate Probability	(Sections 5.	1,5.2)
Many-Sample Inference	(Chapters 1	0-11)
Fitting Models to Data	(Chapters 1	2-13)
Goodness-of-Fit Inference	(Chapter	14)
Nonparametric Inference	(Chapter	15)
Quality Control Charts	(Chapter	16)