HIST, IE, CHE, ME, CS, IE, CHE, ME, MATH, MATH, IE, ME, ECO, ME, CHE, CS, MATH, ME, MATH, CS
a) Construct the frequency table for the data.

MAJOR	FREQUENCY	RELATIVE FREQUENCY (= DENSITY)
CHE	3	$3 / 20=0.15$
CS	3	$3 / 20=0.15$
ECO	1	$1 / 20=0.05$
HIST	1	$1 / 20=0.05$
IE	3	$3 / 20=0.15$
MATH	4	$4 / 20=0.20$
ME	5	$5 / 20=0.25$
TOTAL:	$\mathbf{2 0}$	$\mathbf{2 0} / \mathbf{2 0}=\mathbf{1 . 0 0}$

SANITY CHECKS: Total Frequency should equal \# data points, Total Rel. Freq. should be very close to one Here, the categories are listed in alphabetical order, which is preferred but not required.

Remember, for categorical data, density equals relative frequency.
b) Construct a histogram for the data with density as the vertical axis.

c) What proportion of the students are MATH majors? Look at the RELATIVE FREQUENCY column: \quad RelFreq[MATH] $=4 / 20 \quad$ OR 0.20
d) What percent of the students are Chemical Engineering (CHE) majors?

Look at the RELATIVE FREQUENCY column: RelFreq[MATH] $=3 / 20=0.15=15 \%$
e) Which major has the most students?

Use histogram to find the category with the highest (relative) frequency: Mechanical Engineering (ME)

EX 1.2.2: Given the following dataset of $\#$ strikes in completed bowling games: $2,7,3,1,2,3,6,0,12,4,3,2,3,3,4,5$
Moreover, suppose the bin widths (class widths) are all equal with width one, leading to the bins (classes):
$0-<1,1-<2,2-<3,3-<4,4-<5,5-<6,6-<7,7-<8,8-<9,9-<10,10-<11,11-<12,12-<13$

- OR IF YOU PREFER INTERVAL NOTATION -
$[0,1),[1,2),[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9),[9,10),[10,11),[11,12),[12,13)$
a) Construct the frequency table for the data.

BIN (\# STRIKES/GAME)	FREQ.	REL. FREQ.	BIN WIDTH	DENSITY
$[0,1)$	1	$1 / 16$	$1-0=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[1,2)$	1	$1 / 16$	$2-1=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[2,3)$	3	$3 / 16$	$3-2=1$	$3 / 16 \div 1=3 / 16=0.1875$
$[3,4)$	5	$5 / 16$	$4-3=1$	$5 / 16 \div 1=5 / 16=0.3125$
$[4,5)$	2	$2 / 16$	$5-4=1$	$2 / 16 \div 1=2 / 16=0.1250$
$[5,6)$	1	$1 / 16$	$6-5=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[6,7)$	1	$1 / 16$	$7-6=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[7,8)$	1	$1 / 16$	$8-7=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[8,9)$	0	$0 / 16$	$9-8=1$	$0 / 16 \div 1=0 / 16=0$
$[9,10)$	0	$0 / 16$	$10-9=1$	$0 / 16 \div 1=0 / 16=0$
$[10,11)$	0	$0 / 16$	$11-10=1$	$0 / 16 \div 1=0 / 16=$
$[11,12)$	0	$0 / 16$	$12-11=1$	$0 / 16 \div 1=0 / 16=$
$[12,13)$	1	$1 / 16$	$13-12=1$	$1 / 16 \div 1=1 / 16=0.0625$
TOTAL:	$\mathbf{1 6}$	$\mathbf{1 6} / \mathbf{1 6}=\mathbf{1 . 0 0}$	$\mathbf{1 3}$	$($ IRRELEVANT)

SANITY CHECKS: Total Frequency should equal \# data points, Total Rel. Freq. should be exactly equal to one SANITY CHECK: (Lower bound of Bottom Bin) $+($ Total Bin Width $)=($ Upper Bound of Top Bin)

Here, the bottom bin is $[0,1)$ with a lower bound of $\mathbf{0} \&$ the top bin is $[12,13)$ with an upper bound of 13 .
b) Construct a histogram for the data with density as the vertical axis.

c) Describe the modality \& skewness of the data.

Looking at the histogram, the data is unimodal and positively skewed
d) Looking at the histogram, does there appear to be any outliers? If so, identify them.

Yes, the 12 strikes data point is an outlier as it's far away from the rest of the data.

Here, the characteristic observed for each bowling game is the number of strikes.
Moreover, suppose the bin widths (class widths) are unequal in way which leads to the following bins (classes):
$0-<1,1-<3,3-<6,6-<13$

- OR IF YOU PREFER INTERVAL NOTATION -
$[0,1),[1,3),[3,6),[6,13)$
a) Construct the frequency table for the data.

BIN (\# STRIKES/GAME)	FREQ.	REL. FREQ.	BIN WIDTH	DENSITY
$[0,1)$	1	$1 / 16$	$1-0=1$	$1 / 16 \div 1=1 / 16=0.0625$
$[1,3)$	4	$4 / 16$	$3-1=2$	$4 / 16 \div 2=2 / 16=0.1250$
$[3,6)$	8	$8 / 16$	$6-3=3$	$8 / 16 \div 3=1 / 6 \approx 0.167$
$[6,13)$	3	$3 / 16$	$13-6=7$	$3 / 16 \div 7=3 / 112 \approx 0.027$
TOTAL:	$\mathbf{1 6}$	$\mathbf{1 6} / \mathbf{1 6}=\mathbf{1 . 0 0}$	$\mathbf{1 3}$	(IRRELEVANT)

SANITY CHECKS: Total Frequency should equal \# data points, Total Rel. Freq. should be exactly equal to one SANITY CHECK: (Lower bound of Bottom Bin) $+($ Total Bin Width $)=($ Upper Bound of Top Bin) Here, the bottom bin is $[0,1)$ with a lower bound of $\mathbf{0} \&$ the top bin is $[6,13)$ with an upper bound of $\mathbf{1 3}$.
b) Construct a histogram for the data with density as the vertical axis.

c) What proportion of the bowling games have at most five strikes?

Identify "uber-bin" corresponding to "at most five strikes": $[0,6)$
Decompose "uber-bin" as a union of the given bins: $\quad[0,6)=[0,1) \cup[1,3) \cup[3,6)$
Add the corresponding relative frequencies: $1 / 16+4 / 16+8 / 16=13 / 16$ OR 0.8125
d) What percent of the bowling games have at least six strikes?

Identify "uber-bin" corresponding to "at least six strikes": $[6,13)$
In this case, the "uber-bin" is also one of the given bins.
Look up the bin's corresponding relative frequency: $\quad 3 / 16=0.1875=18.75 \%$

