VISUALIZING DATA: FREQ. TABLES \& HISTOGRAMS [DEVORE 1.2]

- FREQUENCY TABLES: Given a sample of eye colors:

$$
\mathrm{H}, \mathrm{Br}, \mathrm{Br}, \mathrm{Br}, \mathrm{~S}, \mathrm{~A}, \mathrm{H}, \mathrm{H}, \mathrm{G}, \mathrm{~A}, \mathrm{Bl}, \mathrm{Bl}, \mathrm{Br}, \mathrm{Bl}, \mathrm{~A}, \mathrm{Br}, \mathrm{H}, \mathrm{G}, \mathrm{~A}, \mathrm{~A}, \mathrm{Br}, \mathrm{Bl}, \mathrm{G}, \mathrm{Bl}, \mathrm{Bl}
$$

Then the resulting frequency table is:

EYE COLOR	FREQUENCY	RELATIVE FREQUENCY
Amber (A)	5	$5 / 24 \approx 0.208$
Blue (Bl)	6	$6 / 24=0.250$
Brown (Br)	5	$5 / 24 \approx 0.208$
Green (G)	3	$3 / 24=0.125$
Hazel (H)	4	$4 / 24 \approx 0.167$
Silver (S)	1	$1 / 24 \approx 0.042$
TOTAL:	$\mathbf{2 4}$	1.000

Each category's frequency entails from counting the \# data points of that category.
Compute the total frequency: $5+6+5+3+4+1=\mathbf{2 4}$
Each category's relative frequency is its frequency divided by the total freq.
The total relative frequency should be very close to one (i.e. between 0.998 \& 1.002)
Frequency tables can also be made for numerical data. (see EX 1.2.2 \& EX 1.2.3 in this outline)

- HISTOGRAMS FOR CATEGORICAL DATA: From the above sample the resulting histogram is:

or using density (which is the same as relative frequency for categorical data) on the vertical axis Categorical Histogram

Finally, the vertical axis could be percent. (i.e. multiply the relative freq. or density by 100%)

- HISTOGRAMS FOR DISCRETE NUMERICAL DATA (EQUAL BIN WIDTHS):

Given a sample of heights (in ft): $4.9,4.9,5.0,5.7,6.2,5.3,5.2,5.5,5.6,5.7,5.7,4.1,6.8$
Here are three histograms using equal bin widths:

Pick a bin width that avoids gaps (right figure) and "overlumping" (left figure).
For discrete numerical data, bin widths will be chosen a priori $\&$ the vertical axis is always density $=\frac{\text { relative frequency }}{\text { bin width }}$ - HISTOGRAMS FOR DISCRETE NUMERICAL DATA (UNEQUAL BIN WIDTHS):

Given a sample of heights (in ft): $4.9,4.9,5.0,5.7,6.2,5.3,5.2,5.5,5.6,5.7,5.7,4.1,6.8$
Here are three histograms using unequal bin widths:

Unequal bin widths are useful when there are some isolated data points.
For discrete numerical data, bin widths will be chosen a priori \& the vertical axis is always density $=\frac{\text { relative frequency }}{\text { bin width }}$

VISUALIZING DATA: MODALITY \& SKEWNESS [DEVORE 1.2]

- MODALITY OF DATA (DEFINITION):

A dataset/sample/population is unimodal if its histogram has exactly one peak.
A dataset/sample/population is bimodal if its histogram has exactly two peaks.
A dataset/sample/population is multimodal if its histogram has many peaks.

- MODALITY OF DATA (EXAMPLES): (see pgs 22-23 of textbook for examples of multimodal data)

- SKEWNESS OF DATA (DEFINITION):

A dataset/sample/population is positively skewed if its histogram has a long upper tail.
A dataset/sample/population is negatively skewed if its histogram has a long lower tail.
A dataset/sample/population is symmetric if its histogram's left half and right half are mirror images of each other.

- SKEWNESS OF DATA (EXAMPLES):

VISUALIZING DATA: OUTLIERS [DEVORE 1.2]

- OUTLIER(S) IN DISCRETE NUMERICAL DATA (DEFINITION):

A data point in a dataset is an outlier if it is "far away" from "most" of the data.

- OUTLIER(S) IN DISCRETE NUMERICAL DATA (EXAMPLE): Consider the dataset:

$$
1,5,2,2,1,4,1,3,20,5,16,16
$$

Then here are two histograms for the data:

The left histogram (with equal bin widths) suggest that $16 \& 20$ are outliers.
But identifying outliers is unclear with the right histogram (unequal bin widths).

- OUTLIERS (REMARKS):
- Outliers are essentially extreme values of a dataset or sample.
- Outliers often occur due to catastrophic measurement errors:
* Instrumentation terribly mis-calibrated
* Instrumentation malfunctions during measurement
* Person deliberately lying in a survey
* Person deliberately exagerating measurements or counts
- However, not all outliers are due to errors:
* House prices
* Exam scores
- Histograms are not always effective in revealing outliers.
- Better visual and numerical methods for identifying outliers in Section 1.4
- Outliers are rarely considered for categorical data.
- Outliers are never considered for continuous data.
a) Construct the frequency table for the data.
b) Construct a histogram for the data with density as the vertical axis.
c) What proportion of the students are MATH majors?
d) What percent of the students are Chemical Engineering (CHE) majors?
e) Which major has the most students?

Here, the characteristic observed for each bowling game is the number of strikes.
Moreover, suppose the bin widths (class widths) are all equal where each bin width equals one.
This choice of bin widths results in the following bins (classes):
$0-<1,1-<2,2-<3,3-<4,4-<5,5-<6,6-<7,7-<8,8-<9,9-<10,10-<11,11-<12,12-<13$

- OR IF YOU PREFER INTERVAL NOTATION -

$$
[0,1),[1,2),[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9),[9,10),[10,11),[11,12),[12,13)
$$

a) Construct the frequency table for the data.
b) Construct a histogram for the data with density as the vertical axis.
c) Describe the modality \& skewness of the data.
d) Looking at the histogram, does there appear to be any outliers? If so, identify them.
(C)2016 Josh Engwer - Revised January 23, 2016

Here, the characteristic observed for each bowling game is the number of strikes.
Moreover, suppose the bin widths (class widths) are unequal in way which leads to the following bins (classes):
$0-<1,1-<3,3-<6,6-<13$

- OR IF YOU PREFER INTERVAL NOTATION -
$[0,1),[1,3),[3,6),[6,13)$
a) Construct the frequency table for the data.
b) Construct a histogram for the data with density as the vertical axis.
c) What proportion of the bowling games have at most five strikes?
d) What percent of the bowling games have at least six strikes?

