a) Compute the sample mean, \bar{x}.

Observe that the sample size $n=(\#$ of data points in sample $x)=7$

$$
\bar{x}=\frac{1}{n} \sum_{k=1}^{n} x_{k}=\frac{1}{7} \sum_{k=1}^{7} x_{k}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}}{7}=\frac{8.5+6.8+7.7+10.0+11.3+10.0+9.9}{7}=\frac{64.2}{7} \approx \mathbf{9 . 1 7 1}
$$

b) Compute the sample median, \widetilde{x}.

First, sort sample: $\quad x: 6.8,7.7,8.5,9.9,10.0,10.0,11.3$
Then, since sample size $(n=7)$ is odd, $\widetilde{x}=x_{([n+1] / 2)}=x_{([7+1] / 2)}=x_{(4)}=\left(4^{\text {th }}\right.$ data point in sorted sample $\left.x\right)=\mathbf{9 . 9}$
c) Without visualizing the data, identify the skewness of the sample.

Observe that $\bar{x} \approx 9.171<9.9=\widetilde{x} \Longrightarrow \bar{x}<\widetilde{x} \Longrightarrow$ Sample is negatively skewed
d) Suppose the largest \& smallest data points were removed from the sample. What trimming percentage achieves this?

Solve for $p: \frac{n p}{100}=1 \longleftarrow$ RHS is one since one extreme data point per side of sorted sample is to be removed.
$\frac{n p}{100}=1 \Longrightarrow \frac{7 p}{100}=1 \Longrightarrow p=\frac{100}{7} \approx 14.29 \Longrightarrow$ Trimming percentage is $\mathbf{1 4 . 2 9 \%}$
e) Compute the trimmed mean using the trimming percentage found in the previous part.

First, remove the largest \& smallest data points, then compute ordinary mean of remaining dataset:
(14.29% Trimmed x) : 7.7, 8.5, 9.9, 10.0, 10.0
$\therefore \quad \bar{x}_{t r(14.29 \%)}=\frac{7.7+8.5+9.9+10.0+10.0}{5}=\frac{46.1}{5}=\mathbf{9 . 2 2}$
f) Compute the $33^{\text {rd }}$ percentile of the sample, $x_{0.33}$.
$x_{0.33}=x_{(\lceil 0.33 n\rceil)}=x_{(\lceil 0.33(7)\rceil)}=x_{(\lceil 2.31\rceil)}=x_{(3)}=\left(3^{\text {rd }}\right.$ data point in sorted sample $\left.x\right)=\mathbf{8 . 5}$
g) Which data point is the smallest such data point that is greater than or equal to 25% of the sample?

This by definition is the $25^{\text {th }}$ percentile, which is also the $1^{\text {st }}$ quartile :
$x_{Q 1}=x_{0.25}=x_{(\lceil 0.25 n\rceil)}=x_{(\lceil 0.25(7)\rceil)}=x_{(\lceil 1.75\rceil)}=x_{(2)}=\left(2^{\text {nd }}\right.$ data point in sorted sample $\left.x\right)=\mathbf{7 . 7}$
h) Compute the lower hinge, $x_{L H}$, and upper hinge, $x_{U H}$, of the sample.

First, split the sorted sample into two halves using the sample median as guidance.
(Left Half of $x): \quad 6.8,7.7,8.5,9.9 \quad \Longrightarrow x_{L H}=($ Median of left half of $x)=\frac{7.7+8.5}{2}=8.1$
(Right Half of x): 9.9, 10.0, 10.0, 11.3 $\Longrightarrow x_{U H}=($ Median of right half of $x)=\frac{10.0+10.0}{2}=\mathbf{1 0 . 0}$
NOTE: The median $(\widetilde{x}=9.9)$ is included in both halves since sample size $(n=7)$ is odd.

LEGEND:

- RHS translates to "Right Hand Side" (of an equation)
- \Longrightarrow translates to "which implies that"
- $\lceil x\rceil$ means round x up if not an integer: $\lceil 3\rceil=3, \quad\lceil 3.1\rceil=4, \quad\lceil 3.5\rceil=4, \quad\lceil 3.9\rceil=4$
a) Compute the sample mean, \bar{y}.

Observe that the sample size $m=(\#$ of data points in sample $y)=8$
$\bar{y}=\frac{1}{m} \sum_{k=1}^{m} y_{k}=\frac{1}{8} \sum_{k=1}^{8} y_{k}=\frac{8.5+6.8+7.7+10.0+11.3+10.0+9.9+18.5}{8}=\frac{82.7}{8}=\mathbf{1 0 . 3 3 7 5}$
b) Compute the sample median, \widetilde{y}.

First, sort sample: $\quad y: 6.8,7.7,8.5,9.9,10.0,10.0,11.3,18.5$
Then, since sample size $(m=8)$ is $\underline{\text { even, }} \widetilde{y}=\frac{y_{(n / 2)}+y_{(1+[n / 2])}}{2}=\frac{y_{(4)}+y_{(5)}}{2}=\frac{9.9+10.0}{2}=\frac{19.9}{2}=\mathbf{9 . 9 5}$
c) Without visualizing the data, identify the skewness of the sample.

Observe that $\bar{y}=10.3375>9.95=\widetilde{y} \Longrightarrow \bar{y}>\widetilde{y} \Longrightarrow$ Sample is positively skewed
d) Compute the 25% trimmed sample mean, $\bar{y}_{t r(25 \%)}$.

First, determine how many extreme data points per side of sorted sample to trim:
$\frac{m p}{100}=\frac{(8)(25)}{100}=\frac{200}{100}=2 \Longrightarrow$ The 2 largest \& 2 smallest data points should be trimmed from sample
Then, remove the two largest \& two smallest data points, then compute ordinary mean of remaining dataset:
(25% Trimmed y) : 8.5, 9.9, 10.0, 10.0
$\therefore \quad \bar{y}_{\operatorname{tr}(25 \%)}=\frac{8.5+9.9+10.0+10.0}{4}=\frac{38.4}{4}=\mathbf{9 . 6}$
e) Compute the $3^{\text {rd }}$ quartile of the sample, $y_{Q 3}$.
$y_{Q 3}=y_{0.75}=y_{(\lceil 0.75 m\rceil)}=y_{(\lceil 0.75(8)\rceil)}=y_{(\lceil 6\rceil)}=y_{(6)}=\left(6^{\text {th }}\right.$ data point in sorted sample $\left.y\right)=\mathbf{1 0 . 0}$
f) Which data point is the largest such data point that is less than or equal to 87% of the sample?

This is equivalent to finding the smallest data point that's greater than or equal to $100 \%-87 \%=13 \%$ of the sample. $y_{0.13}=y_{(\lceil 0.13 m\rceil)}=y_{(\lceil 0.13(8)\rceil)}=y_{(\lceil 1.04\rceil)}=y_{(2)}=\left(2^{\text {nd }}\right.$ data point in sorted sample $\left.y\right)=7.7$
g) Compute the lower hinge, $y_{L H}$, and upper hinge, $y_{U H}$, of the sample.

First, split the sorted sample into two halves using the sample median as guidance.
(Left Half of y): $\quad 6.8,7.7,8.5,9.9 \quad \Longrightarrow y_{L H}=($ Median of left half of $y)=\frac{7.7+8.5}{2}=\mathbf{8 . 1}$
(Right Half of y): 10.0, 10.0, 11.3, 18.5 $\Longrightarrow y_{U H}=($ Median of right half of $y)=\frac{10.0+11.3}{2}=\mathbf{1 0 . 6 5}$
NOTE: The median $(\widetilde{y}=9.95)$ is not included in either half since sample size $(m=8)$ is even.

LEGEND:

- \Longrightarrow translates to "which implies that"
- $\lceil x\rceil$ means round x up if not an integer: $\lceil 3\rceil=3,\lceil 3.1\rceil=4, \quad\lceil 3.5\rceil=4, \quad\lceil 3.9\rceil=4$

