- NOTATION FOR SAMPLES: For methods \& procedures, it's helpful to have consistent notation for samples:
- NOTATION FOR A SINGLE SAMPLE:

Sample as a whole is denoted by x.
The sample size (i.e. \# data points) is denoted by n.
Each data point is denoted by a corresponding subscript: $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$

- NOTATION FOR TWO SAMPLES:

Samples as a whole are denoted by $x \& y$.
The sample sizes are denoted by $n \& m$ or $n_{1} \& n_{2}$
The data points are denoted by subscripts: $\quad x_{1}, x_{2}, \ldots, x_{n} \& y_{1}, y_{2}, \ldots, y_{m} \quad$ OR $\quad x_{1}, x_{2}, \ldots, x_{n_{1}} \& y_{1}, y_{2}, \ldots, y_{n_{2}}$

- NOTATION FOR THREE+ SAMPLES: Run thru upper-end of lowercase alphabet as needed: x, y, z, w, v, u
- NOTATION FOR SAMPLES (EXAMPLES):
- Student Heights (in ft) $\quad x: 6.1,3.9,5.6,4.0,5.9,5.9$
* Sample Size $n_{1}=$ (\# data points in sample $\left.x\right)=6$
* Data points $x_{1}=6.1, x_{2}=3.9, x_{3}=5.6, x_{4}=4.0, x_{5}=5.9, x_{6}=5.9$
- Student Weights (in lb) $\quad y: 205,135,183$
* Sample Size $n_{2}=$ (\# data points in sample $\left.y\right)=3$
* Data points $y_{1}=205, y_{2}=135, y_{3}=183$
- Student Eye Colors Hazel, Blue, Brown, Hazel
* Sample Size $n_{3}=(\#$ data points in sample of categorical data $)=4$
* Sample \& Data points of categorical data are not labeled.
- SAMPLE STATISTICS: A statistic of a sample is a meaningful characteristic of a the sample.

Statistics are denoted by certain "decorations" of the letter for the sample.

- POPULATION PARAMETERS: A parameter of a population is a meaningful characteristic of the population.

Parameters are often (but not always) denoted by lower-case Greek letters.

- SORTED SAMPLES: With discrete numerical data, it's important for some sample statistics that the sample is sorted in ascending order.

Given a sample with n data points

$$
x: \quad x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}
$$

Then the corresponding sorted sample is $\quad x: x_{(1)}, x_{(2)}, \ldots, x_{(n-1)}, x_{(n)}$
where the data points are sorted in ascending order:

$$
x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n-1)} \leq x_{(n)}
$$

$x_{(1)}$ is the smallest data point in the sample. $x_{(n)}$ is the largest data point in the sample.

- SORTED SAMPLES (EXAMPLE):

Given sample $x: 5,4,8 \quad \Longrightarrow \quad x_{1}=5, x_{2}=4, x_{3}=8$
Then, the sorted sample is $x: 4,5,8 \quad \Longrightarrow \quad x_{(1)}=4, x_{(2)}=5, x_{(3)}=8$

- ROUNDING (COMPACT NOTATION): It is convenient to have mathematical notation for rounding numbers.

$$
\begin{array}{rllll}
\text { Always Round Down: } & \lfloor 3\rfloor=3 & \lfloor 3.1\rfloor=3 & \lfloor 3.5\rfloor=3 & \lfloor 3.9\rfloor=3 \\
\text { Always Round Up: } & \lceil 3\rceil=3 & \lceil 3.1\rceil=4 & \lceil 3.5\rceil=4 & \lceil 3.9\rceil=4 \\
\text { Round to Nearest Integer: } & \llbracket 3 \rrbracket=3 & \llbracket 3.1 \rrbracket=3 & \llbracket 3.5 \rrbracket=4 & \llbracket 3.9 \rrbracket=4
\end{array}
$$

Throughout this page, assume the following discrete numerical sample $\quad x: x_{1}, x_{2}, \ldots, x_{n}$

- MEAN OF A SAMPLE: The mean, denoted \bar{x}, is the average of the sample.

$$
\bar{x}:=\frac{1}{n} \sum_{k=1}^{n} x_{k}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- MEDIAN OF A SAMPLE: The median, denoted \widetilde{x}, is the middle value of the sorted sample.

$$
\widetilde{x}:=\left\{\begin{array}{cl}
x_{([n+1] / 2)} & , \text { if } n \text { is odd } \\
\frac{x_{(n / 2)}+x_{(1+[n / 2])}}{2} & , \text { if } n \text { is even }
\end{array}=\left\{\begin{array}{cc}
\begin{array}{c}
\text { Middle data point } \\
\text { in sorted sample }
\end{array} & , \text { if } n \text { is odd } \\
\text { Average of the two } \\
\text { middle data points } \\
\text { in sorted sample }
\end{array} \quad, \text { if } n\right. \text { is even }\right.
$$

- TRIMMED MEAN OF A SAMPLE: The $p \%$ trimmed mean, $\bar{x}_{t r(p \%)}$, is the mean of the dataset resulting from eliminating the smallest $p \%$ and largest $p \%$ of the sorted sample.
$\bar{x}_{\operatorname{tr}(10 \%)}:=$ Mean of sorted sample x with largest 10% \& smallest 10% removed
$\bar{x}_{t r(25 \%)}:=$ Mean of sorted sample x with largest 25% \& smallest 25% removed
Relevant trimming percentages tend to be moderate: between 5\% \& 25%
For simplicity, the trimming percentage will always evenly divide sample size n.
In other words, the expression $n p / 100$ will always be an integer.
- MEAN, MEDIAN, TRIMMED MEANS OF A POPULATION:

The population mean is denoted by μ. ("mew bar")
The population median is denoted by $\widetilde{\mu}$. ("mew tilde" or "mew twiddle")
The $p \%$ trimmed population mean is denoted by $\mu_{\operatorname{tr}(p \%)}$.
The 10% trimmed population mean is denoted by $\mu_{\operatorname{tr}(10 \%)}$.
Computing $\mu, \widetilde{\mu}$, etc for finite populations is not practical due to their enormity.
Computing $\mu, \widetilde{\mu}$, etc for infinite populations will be encountered in Chapter 4.

- MEAN, MEDIAN AND SKEWNESS IN SAMPLES: (See the 1.3 Slides for histograms illustrating this)

If $\bar{x}<\widetilde{x}$, then the sample is negatively skewed.
If $\bar{x}=\widetilde{x}$, then the sample is symmetric.
If $\bar{x}>\tilde{x}$, then the sample is positively skewed.

- MEAN, MEDIAN AND SKEWNESS IN POPULATIONS: (See the 1.3 Slides for histograms illustrating this)

If $\mu<\widetilde{\mu}$, then the population is negatively skewed.
If $\mu=\widetilde{\mu}$, then the population is symmetric.
If $\mu>\widetilde{\mu}$, then the population is positively skewed.

- MEASURES OF CENTER AND THEIR SENSITIVITY TO OUTLIERS:

The mean, \bar{x}, is extremely sensitive to outliers.
Lightly-trimmed means (e.g. $\left.\bar{x}_{\operatorname{tr}(5 \%)}\right)$ are largely sensitive to outliers.
Heavily-trimmed means (e.g. $\left.\bar{x}_{t r(25 \%)}\right)$ are largely insensitive to outliers.
The median, \widetilde{x}, is almost completely insensitive to outliers.

SUMMARIZING DATA: MEASURES OF RANK [DEVORE 1.3]
Throughout this page, assume the following discrete numerical sample
$x: \quad x_{1}, x_{2}, \ldots, x_{n}$

- PERCENTILES OF A SAMPLE: The p-th percentile, denoted $x_{p / 100}$, is the smallest data point such that $p \%$ of the sample is less than or equal to that data point:

$$
\begin{gathered}
x_{p / 100}:=x_{(\lceil n p / 100\rceil)}=\left(\left[\frac{n p}{100}\right\rceil\right) \text {-th data point in sorted sample } \\
\text { e.g. }(37 \% \text { of sample } x) \leq x_{0.37} \equiv\left(37^{\text {th }} \text { percentile of sample } x\right) \\
\text { e.g. }(98 \% \text { of sample } y) \leq y_{0.98} \equiv\left(98^{t h} \text { percentile of sample } y\right)
\end{gathered}
$$

Software packages (e.g. MATLAB, R, SPSS, SAS, Minitab) may define percentiles slightly differently.

- QUARTILES OF A SAMPLE:

(1) $\quad x_{Q 1}:=x_{0.25} \equiv 1^{\text {st }}$ quartile of sample x
i.e. $(25 \%$ of sample $x) \leq\left(1^{\text {st }}\right.$ quartile of sample $\left.x\right)$
(2) $\quad x_{Q 2}:=x_{0.50} \equiv 2^{\text {nd }}$ quartile of sample x
i.e. (50% of sample $x) \leq\left(2^{n d}\right.$ quartile of sample $\left.x\right)$
$2^{n d}$ quartile, $x_{Q 2}$, is never used since it's exactly or very close to median, \widetilde{x}.
(3) $x_{Q 3}:=x_{0.75} \equiv 3^{\text {rd }}$ quartile ($75^{t h}$ percentile) of sample x
i.e. $(75 \%$ of sample $x) \leq\left(3^{\text {rd }}\right.$ quartile of sample $\left.x\right)$

- HINGES OF A SAMPLE:

(1) its lower hinge, $x_{L H}$, is the median of the lower half of sorted sample.
(2) its middle hinge, $x_{M H}$, is exactly the median of entire sample: $x_{M H}=\widetilde{x}$
(3) its upper hinge, $x_{U H}$, is the median of the upper half of sorted sample.

- HINGES OF A SAMPLE (EXAMPLES): [Parentheses around a value indicates it is not a data point in sample.]

For instance, given sample $\quad x: 3.9,4.0,4.3,4.8,5.1,5.6,5.9,5.9,6.0,6.1$

For instance, given sample
$y: \quad 5.9,3.9,5.9,4.8,5.6,4.0,6.1,4.3$

[^0]$$
x: 8.5,6.8,7.7,10.0,11.3,10.0,9.9
$$
a) Compute the sample mean, \bar{x}.
b) Compute the sample median, \widetilde{x}.
c) Without visualizing the data, identify the skewness of the sample.
d) Suppose the largest \& smallest data points were removed from the sample. What trimming percentage achieves this?
e) Compute the trimmed mean using the trimming percentage found in the previous part.
f) Compute the $33^{\text {rd }}$ percentile of the sample, $x_{0.33}$.
g) Which data point is the smallest such data point that is greater than or equal to 25% of the sample?
h) Compute the lower hinge, $x_{L H}$, and upper hinge, $x_{U H}$, of the sample.
$$
y: 8.5,6.8,7.7,10.0,11.3,10.0,9.9,18.5
$$
a) Compute the sample mean, \bar{y}.
b) Compute the sample median, \widetilde{y}.
c) Without visualizing the data, identify the skewness of the sample.
d) Compute the 25% trimmed sample mean, $\bar{y}_{t r(25 \%)}$.
e) Compute the $3^{\text {rd }}$ quartile of the sample, $y_{Q 3}$.
f) Which data point is the largest such data point that is less than or equal to 87% of the sample?
g) Compute the lower hinge, $y_{L H}$, and upper hinge, $y_{U H}$, of the sample.

[^1]
[^0]: © 2016 Josh Engwer - Revised January 27, 2016

[^1]: © 2016 Josh Engwer - Revised January 27, 2016

