SUMMARIZING DATA: PRELIMINARIES [DEVORE 1.3]

• **NOTATION FOR SAMPLES:** For methods & procedures, it's helpful to have consistent notation for samples:

• NOTATION FOR A SINGLE SAMPLE:

Sample as a whole is denoted by x.

The sample size (i.e. # data points) is denoted by n.

Each data point is denoted by a corresponding subscript: $x_1, x_2, \ldots, x_{n-1}, x_n$

• NOTATION FOR TWO SAMPLES:

Samples as a whole are denoted by x & y.

The sample sizes are denoted by n & m or $n_1 \& n_2$

The data points are denoted by subscripts: $x_1, x_2, \ldots, x_n \& y_1, y_2, \ldots, y_m$ OR $x_1, x_2, \ldots, x_{n_1} \& y_1, y_2, \ldots, y_{n_2}$

• NOTATION FOR THREE+ SAMPLES: Run thru upper-end of lowercase alphabet as needed: x, y, z, w, v, u

• NOTATION FOR SAMPLES (EXAMPLES):

- Student Heights (in ft) x: 6.1, 3.9, 5.6, 4.0, 5.9, 5.9
 - * Sample Size $n_1 = (\# \text{ data points in sample } x) = 6$
 - * Data points $x_1 = 6.1$, $x_2 = 3.9$, $x_3 = 5.6$, $x_4 = 4.0$, $x_5 = 5.9$, $x_6 = 5.9$
- Student Weights (in lb) y: 205, 135, 183
 - * Sample Size $n_2 = (\# \text{ data points in sample } y) = 3$
 - * Data points $y_1 = 205, y_2 = 135, y_3 = 183$

- Student Eye Colors Hazel, Blue, Brown, Hazel

- * Sample Size $n_3 = (\# \text{ data points in sample of categorical data}) = 4$
- $\ast\,$ Sample & Data points of categorical data are <u>not</u> labeled.
- <u>SAMPLE STATISTICS</u>: A statistic of a sample is a meaningful characteristic of a the sample.

Statistics are denoted by certain "decorations" of the letter for the sample.

- **POPULATION PARAMETERS:** A **parameter** of a population is a meaningful characteristic of the population. Parameters are often (but not always) denoted by lower-case Greek letters.
- **SORTED SAMPLES:** With <u>discrete numerical data</u>, it's important for some sample statistics that the sample is <u>sorted</u> in ascending order.
 - Given a sample with *n* data points $x: x_1, x_2, \ldots, x_{n-1}, x_n$

Then the corresponding **sorted sample** is $x: x_{(1)}, x_{(2)}, \ldots, x_{(n-1)}, x_{(n)}$

where the data points are sorted in ascending order:

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n-1)} \le x_{(n)}$$

 $x_{(1)}$ is the smallest data point in the sample. $x_{(n)}$ is the largest data point in the sample.

• SORTED SAMPLES (EXAMPLE):

Given sample $x: 5, 4, 8 \implies x_1 = 5, x_2 = 4, x_3 = 8$ Then, the sorted sample is $x: 4, 5, 8 \implies x_{(1)} = 4, x_{(2)} = 5, x_{(3)} = 8$

• ROUNDING (COMPACT NOTATION): It is convenient to have mathematical notation for rounding numbers.

 Always Round Down:
 [3] = 3 [3.1] = 3 [3.5] = 3 [3.9] = 3

 Always Round Up:
 [3] = 3 [3.1] = 4 [3.5] = 4 [3.9] = 4

 Round to Nearest Integer:
 [3] = 3 [3.1] = 3 [3.5] = 4 [3.9] = 4

©2016 Josh Engwer - Revised January 27, 2016

SUMMARIZING DATA: MEASURES OF CENTER [DEVORE 1.3]

Throughout this page, assume the following <u>discrete numerical</u> sample

 $x: x_1, x_2, \ldots, x_n$

• **MEAN OF A SAMPLE:** The **mean**, denoted \overline{x} , is the average of the sample.

$$\overline{x} := \frac{1}{n} \sum_{k=1}^{n} x_k = \frac{x_1 + x_2 + \dots + x_n}{n}$$

• **MEDIAN OF A SAMPLE:** The median, denoted \tilde{x} , is the <u>middle value</u> of the <u>sorted</u> sample.

$$\widetilde{x} := \begin{cases} x_{([n+1]/2)} &, \text{ if } n \text{ is odd} \\ \frac{x_{(n/2)} + x_{(1+[n/2])}}{2} &, \text{ if } n \text{ is even} \end{cases} = \begin{cases} \text{Middle data point} &, \text{ if } n \text{ is odd} \\ \text{in sorted sample} &, \text{ if } n \text{ is odd} \\ \text{Average of the two} \\ \text{middle data points} &, \text{ if } n \text{ is even} \\ \text{ in sorted sample} &, \text{ if } n \text{ is even} \end{cases}$$

.

• TRIMMED MEAN OF A SAMPLE: The p% trimmed mean, $\overline{x}_{tr(p\%)}$, is the mean of the dataset resulting from eliminating the smallest p% and largest p% of the sorted sample.

 $\overline{x}_{tr(10\%)} :=$ Mean of sorted sample x with largest 10% & smallest 10% removed

 $\overline{x}_{tr(25\%)} :=$ Mean of sorted sample x with largest 25% & smallest 25% removed

Relevant trimming percentages tend to be moderate: between 5% & 25%

For simplicity, the trimming percentage will always evenly divide sample size n.

In other words, the expression np/100 will always be an integer.

• MEAN, MEDIAN, TRIMMED MEANS OF A POPULATION:

The **population mean** is denoted by μ . ("mew bar")

The **population median** is denoted by $\tilde{\mu}$. ("mew tilde" or "mew twiddle")

The p% trimmed population mean is denoted by $\mu_{tr(p\%)}$.

The 10% trimmed population mean is denoted by $\mu_{tr(10\%)}$.

Computing μ , $\tilde{\mu}$, etc for finite populations is not practical due to their enormity.

Computing μ , $\tilde{\mu}$, etc for infinite populations will be encountered in Chapter 4.

• MEAN, MEDIAN AND SKEWNESS IN SAMPLES: (See the 1.3 Slides for histograms illustrating this)

If $\overline{x} < \widetilde{x}$, then the sample is negatively skewed.

If $\overline{x} = \widetilde{x}$, then the sample is symmetric.

If $\overline{x} > \widetilde{x}$, then the sample is positively skewed.

• MEAN, MEDIAN AND SKEWNESS IN POPULATIONS: (See the 1.3 Slides for histograms illustrating this)

If $\mu < \widetilde{\mu}$, then the population is <u>negatively skewed</u>.

If $\mu = \tilde{\mu}$, then the population is symmetric.

If $\mu > \widetilde{\mu}$, then the population is positively skewed.

• MEASURES OF CENTER AND THEIR SENSITIVITY TO OUTLIERS:

The mean, \overline{x} , is extremely sensitive to outliers.

Lightly-trimmed means (e.g. $\overline{x}_{tr(5\%)}$) are largely sensitive to outliers.

Heavily-trimmed means (e.g. $\overline{x}_{tr(25\%)}$) are largely insensitive to outliers.

The median, \tilde{x} , is almost completely insensitive to outliers.

©2016 Josh Engwer - Revised January 27, 2016

SUMMARIZING DATA: MEASURES OF RANK [DEVORE 1.3]

Throughout this page, assume the following discrete numerical sample $x: x_1, x_2, \ldots, x_n$

• **PERCENTILES OF A SAMPLE:** The *p*-th percentile, denoted $x_{p/100}$, is the smallest data point such that p% of the sample is less than or equal to that data point:

 $x_{p/100} := x_{(\lceil np/100 \rceil)} = \left(\lceil \frac{np}{100} \rceil \right) \text{-th data point in <u>sorted</u> sample e.g. (37% of sample x) <math>\leq x_{0.37} \equiv (37^{th} \text{ percentile of sample } x)$ e.g. (98% of sample y) $\leq y_{0.98} \equiv (98^{th} \text{ percentile of sample } y)$

Software packages (e.g. MATLAB, R, SPSS, SAS, Minitab) may define percentiles slightly differently.

• QUARTILES OF A SAMPLE:

- (1) $x_{Q1} := x_{0.25} \equiv 1^{st}$ quartile of sample xi.e. (25% of sample x) $\leq (1^{st}$ quartile of sample x)
- (2) x_{Q2} := x_{0.50} ≡ 2nd quartile of sample x
 i.e. (50% of sample x) ≤ (2nd quartile of sample x)
 2nd quartile, x_{Q2}, is never used since it's exactly or very close to median, x̃.
- (3) x_{Q3} := x_{0.75} ≡ 3rd quartile (75th percentile) of sample x
 i.e. (75% of sample x) ≤ (3rd quartile of sample x)

• HINGES OF A SAMPLE:

- (1) its lower hinge, x_{LH} , is the <u>median</u> of the <u>lower half</u> of sorted sample.
- (2) its **middle hinge**, x_{MH} , is exactly the <u>median</u> of entire sample: $x_{MH} = \tilde{x}$
- (3) its **upper hinge**, x_{UH} , is the <u>median</u> of the upper half of sorted sample.

• HINGES OF A SAMPLE (EXAMPLES): [Parentheses around a value indicates it is <u>not</u> a data point in sample.]

^{©2016} Josh Engwer – Revised January 27, 2016

<u>EX 1.3.1</u> Given the following sample of lifetimes of light bulbs (in years):

x: 8.5, 6.8, 7.7, 10.0, 11.3, 10.0, 9.9

- a) Compute the sample mean, \overline{x} .
- b) Compute the sample median, \tilde{x} .
- c) Without visualizing the data, identify the skewness of the sample.
- d) Suppose the largest & smallest data points were removed from the sample. What trimming percentage achieves this?
- e) Compute the trimmed mean using the trimming percentage found in the previous part.
- f) Compute the 33^{rd} percentile of the sample, $x_{0.33}$.
- g) Which data point is the smallest such data point that is greater than or equal to 25% of the sample?
- h) Compute the lower hinge, x_{LH} , and upper hinge, x_{UH} , of the sample.

^{©2016} Josh Engwer – Revised January 27, 2016

<u>EX 1.3.2</u> Given the following sample of lifetimes of light bulbs (in years):

y: 8.5, 6.8, 7.7, 10.0, 11.3, 10.0, 9.9, 18.5

- a) Compute the sample mean, \overline{y} .
- b) Compute the sample median, \tilde{y} .
- c) Without visualizing the data, identify the skewness of the sample.
- d) Compute the 25% trimmed sample mean, $\overline{y}_{tr(25\%)}$.

- e) Compute the 3^{rd} quartile of the sample, y_{Q3} .
- f) Which data point is the largest such data point that is less than or equal to 87% of the sample?
- g) Compute the lower hinge, y_{LH} , and upper hinge, y_{UH} , of the sample.

^{©2016} Josh Engwer – Revised January 27, 2016