$$
x: \quad 21.0,15.0,21.0,21.4,18.1,19.2,17.8,19.7,13.0,35.0
$$

a) Compute the sample range, x_{R}.

First, sort sample $\quad x: 13.0,15.0,17.8,18.1,19.2,19.7,21.0,21.0,21.4,35.0$
Then, $x_{R}=x_{(n)}-x_{(1)}=($ Largest Data Point $)-($ Smallest Data Point $)=35.0-13.0=22$ miles $/$ gallon
b) Compute the sample variance, s^{2}.

Use easier formula since \bar{x} is not known:
$S_{x x}=\sum_{k=1}^{n} x_{k}^{2}-\frac{1}{n}\left(\sum_{k=1}^{n} x_{k}\right)^{2}=4360.14-\left(\frac{1}{10}\right)(201.2)^{2}=311.996 \Longrightarrow s^{2}=\frac{S_{x x}}{n-1}=\frac{311.996}{9} \approx 34.6662$ (miles/gallon) ${ }^{2}$
How to compute sum $\sum_{k=1}^{n} x_{k}^{2}$ via calculator: $13 \cdot 0^{\wedge} 2+15 \cdot 0^{\wedge} 2+17.8^{\wedge} 2+18 \cdot 1^{\wedge} 2+19.2^{\wedge} 2+19.7^{\wedge} 2+21.0^{\wedge} 2+21.0^{\wedge} 2+21.4^{\wedge} 2+35 \cdot 0^{\wedge} 2 \Omega$
c) Compute the sample standard deviation, s.

$$
s=\sqrt{s^{2}}=\sqrt{34.6662} \approx 5.8878 \text { miles/gallon }
$$

d) Compute the interquartile range, $x_{I Q R}$.
$x_{Q 1}=x_{0.25}=x_{(\lceil 0.25 n\rceil)}=x_{(\lceil 0.25(10)\rceil)}=x_{(\lceil 2.5\rceil)}=x_{(3)}=\left(3^{\text {rd }}\right.$ data point in sorted sample $)=17.8$
$x_{Q 3}=x_{0.75}=x_{(\lceil 0.75 n\rceil)}=x_{([0.75(10)\rceil)}=x_{(\lceil 7.5\rceil)}=x_{(8)}=\left(8^{\text {th }}\right.$ data point in sorted sample $)=21.0$
$\therefore \quad x_{I Q R}=x_{Q 3}-x_{Q 1}=21.0-17.8=3.2$ miles $/$ gallon
e) Compute the interhinge range, $x_{I H R}$.
(Left Half of x): $\quad 13.0,15.0,17.8,18.1,19.2 \Longrightarrow x_{L H}=($ Median of left half of $x)=17.8$
(Right Half of x): 19.7, 21.0, 21.0, 21.4, 35.0 $\Longrightarrow x_{U H}=($ Median of right half of $x)=21.0$
$\therefore \quad x_{I H R}=x_{U H}-x_{L H}=21.0-17.8=3.2$ miles $/$ gallon
f) Identify, if any, mild \& extreme outliers in the sample.

Lower Extreme Outlier Boundary: $x_{L H}-3.0 x_{I H R}=17.8-(3.0)(3.2)=8.2$
Lower Mild Outlier Boundary: $x_{L H}-1.5 x_{I H R}=17.8-(1.5)(3.2)=13.0$
Upper Mild Outlier Boundary: $x_{U H}+1.5 x_{I H R}=21.0+(1.5)(3.2)=25.8$
Upper Extreme Outlier Boundary: $x_{U H}+3.0 x_{I H R}=21.0+(3.0)(3.2)=30.6$
\therefore Mild Outliers lie in interval $[8.2,13.0) \cup(25.8,30.6]$ and Extreme Outliers lie in interval $(-\infty, 8.2) \cup(30.6, \infty)$
\therefore Visual inspection of the sample implies that $\mathbf{3 5 . 0}$ is the only outlier and it's an extreme outlier.
g) Construct the horizontal boxplot for the sample. (Use hinges, not quartiles!)

First, compute median as it is needed for boxplot: $\quad \widetilde{x}=\frac{19.2+19.7}{2}=19.45$

h) Use the boxplot to describe the skewness of the sample.

The median is slightly closer to the upper hinge, therefore the middle 50% of the sample is slightly negatively skewed.
The two dashed lines between hinges and outlier boundaries are equal in length, so the data is overall nearly symmetric.

[^0]
[^0]: ©2016 Josh Engwer - Revised January 29, 2016

