SUMMARIZING DATA: MEASURES OF SPREAD [DEVORE 1.4]

Throughout this page, assume the following discrete numerical sample $x: x_1, x_2, \ldots, x_n$

• **RANGE OF A SAMPLE:** Sample range, denoted x_R , is the difference btw largest & smallest data pt:

 $x_R := x_{(n)} - x_{(1)}$

 $x_{(1)} \equiv$ Smallest Data Point

 $x_{(n)} \equiv$ Largest Data Point

• **VARIANCE OF A SAMPLE:** Sample variance, denoted s^2 or s_x^2 , is the following:

$$s^{2} := \frac{1}{n-1} \sum_{k=1}^{n} (x_{k} - \overline{x})^{2}$$

• **STANDARD DEVIATION OF A SAMPLE:** Standard deviation, denoted s or s_x , is the square root of variance:

 $s:=\sqrt{s^2}$

• EASIER FORMULA FOR SAMPLE VARIANCE:

$$s^{2} = \frac{S_{xx}}{n-1}$$
 where $S_{xx} = \sum_{k=1}^{n} x_{k}^{2} - \frac{1}{n} \left(\sum_{k=1}^{n} x_{k}\right)^{2}$

- **PROPERTIES OF VARIANCE & STD DEV:** Let $c \neq 0$ be a non-zero constant. Then:
 - (1) If sample y is defined as follows: y: (x₁ + c), (x₂ + c), ..., (x_n + c) Then, s_y² = s_x² and s_y = s_x
 (i.e. Uniformly shifting a sample does <u>not</u> change its variance & std dev.)
 - (2) If sample z is defined as follows: z: (cx1), (cx2),..., (cxn)
 Then, s²_z = c²s²_x and s_z = |c|s_x
 (i.e. Uniformly scaling a sample scales its variance & std dev accordingly.)
- **DEGREES OF FREEDOM:** # of **degrees of freedom** is the # of values that can vary when computing a statistic.
- INTERQUARTILE RANGE (IQR): Interquartile range, x_{IQR} , is the <u>difference</u> btw the 1st & 3rd quartiles:

$$x_{IQR} := x_{Q3} - x_{Q1}$$

• INTERHINGE RANGE (IHR): Interhinge range, x_{IHR} , is the <u>difference</u> btw lower & upper hinges:

 $x_{IHR} := x_{UH} - x_{LH}$

• MEASURES OF SPREAD & THEIR SENSITIVITY TO OUTLIERS:

- The range, x_R , is extremely sensitive to outliers.
- The variance, s_x^2 , is extremely sensitive to outliers.
- The std dev, s_x , is extremely sensitive to outliers.
- The interquartile range, x_{IQR} , is almost completely insensitive to outliers.
- The interhinge range, x_{IHR} , is almost completely insensitive to outliers.

 $[\]textcircled{O}2016$ Josh Engwer – Revised January 29, 2016

VISUALIZING DATA: BOXPLOTS, COMPARATIVE BOXPLOTS [DEVORE 1.4]

Throughout this page, assume the following discrete numerical sample $x: x_1, x_2, \ldots, x_n$

• CLASSIFYING OUTLIERS:

- A data point x_k is an **outlier** if it's farther than $1.5x_{IHR}$ from closest hinge.
- A data point x_k is an **extreme outlier** if it's farther than $3x_{IHR}$ from closest hinge.
- A mild outlier is an outlier that's not an extreme outlier.

Outlier: $x_k < x_{LH} - \mathbf{1.5}x_{IHR}$ OR $x_k > x_{UH} + \mathbf{1.5}x_{IHR}$ Extreme Outlier: $x_k < x_{LH} - \mathbf{3.0}x_{IHR}$ OR $x_k > x_{UH} + \mathbf{3.0}x_{IHR}$

• **BOXPLOTS:** Boxplots describe overall skewness, middle 50% skewness, and outliers:

In the above boxplot:

- The middle 50% of the sample is positively skewed.
 (since median line is closer to left edge of box)
- The sample is overall positively skewed.

(since line from upper hinge to max non-outlier is longer than line from lower hinge to min non-outlier)

<u>WARNING:</u> Software (e.g. MATLAB, R, SPSS, SAS, Minitab) construct boxplots using <u>quartiles</u> instead of hinges. <u>WARNING:</u> Software (e.g. MATLAB, R, SPSS, SAS, Minitab) may classify mild & extreme outliers slightly differently.

• **<u>COMPARATIVE BOXPLOTS</u>**: Boxplots are excellent for <u>comparing samples</u>:

©2016 Josh Engwer - Revised January 29, 2016

<u>EX 1.4.1:</u> Given the following sample of fuel efficiencies of 6-cylinder vehicles (in miles/gallon):

 $x: \ \ 21.0, \ 15.0, \ 21.0, \ 21.4, \ 18.1, \ 19.2, \ 17.8, \ 19.7, \ 13.0, \ 35.0$

- a) Compute the sample range, x_R .
- b) Compute the sample variance, s^2 .
- c) Compute the sample standard deviation, s.
- d) Compute the interquartile range, x_{IQR} .
- e) Compute the interhinge range, x_{IHR} .
- f) Identify, if any, mild & extreme outliers in the sample.

g) Construct the horizontal boxplot for the sample. (Use hinges, not quartiles!)

h) Use the boxplot to describe the skewness of the sample.

 $[\]textcircled{C}2016$ Josh Engwer – Revised January 29, 2016