Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.
The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F) ailure.
So, for example, the outcome for components $1 \& 2$ functioning but 3 not functioning would be denoted as $S S F$.

(a) Determine the sample space Ω for the experiment.
$\Omega=($ The set of all possible outcomes $)=\{F F F, F F S, F S F, F S S, S F F, S S F, S F S, S S S\}$
(b) Find the outcomes for event $A \equiv$ "Component 1 functions".
$A=\{S F F, S S F, S F S, S S S\} \quad$ OR $\quad A=\{(S, F, F),(S, S, F),(S, F, S),(S, S, S)\}$
(c) Find the outcomes for event $B \equiv$ "Component 2 functions".
$B=\{F S F, F S S, S S F, S S S\} \quad$ OR $\quad B=\{(F, S, F),(F, S, S),(S, S, F),(S, S, S)\}$
(d) Find the outcomes for event $C \equiv$ "Component 3 functions".
$C=\{F F S, F S S, S F S, S S S\} \quad$ OR $\quad C=\{(F, F, S),(F, S, S),(S, F, S),(S, S, S)\}$
(e) Find the outcomes for event $D \equiv$ "Exactly two components function".
$D=\{F S S, S S F, S F S\} \quad$ OR $\quad D=\{(F, S, S),(S, S, F),(S, F, S)\}$
(f) List the outcomes for event $E \equiv$ "At most two components function".
$E=\{F F F, F F S, F S F, F S S, S F F, S S F, S F S\}$
(g) List the outcomes for event $F \equiv$ "The entire system functions".
$F=\{S S F, F F S, S S S, S F S, F S S\}$
(h) Compute F^{c}. What does event F^{c} represent in the context of the experiment?
$F^{c}=($ The set of all outcomes not in $F)=\{F F F, F S F, S F F\}$
$F^{c} \equiv$ The entire system does not function
(i) Compute $A \cup B$. What does event $A \cup B$ represent in the context of the experiment?
$A \cup B=($ The set of all outcomes in A or $B)=\{F S F, F S S, S F F, S F S, S S F, S S S\}$
$A \cup B \equiv$ Component 1 functions or Component 2 functions
(j) Compute $A \cap B$. What does event $A \cap B$ represent in the context of the experiment?
$A \cap B=($ The set of all outcomes in A and $B)=\{S S F, S S S\}$
$A \cap B \equiv$ Component 1 functions and Component 2 functions
(k) Compute $(A \cup B)^{c}$. What does event $(A \cup B)^{c}$ represent in the context of the experiment?
$(A \cup B)^{c}=($ The set of all outcomes neither in $A \underline{\text { nor }} B)=\{F F F, F F S\}$
$(A \cup B)^{c} \equiv$ Neither Component 1 nor Component 2 functions
(1) Compute $A \cap B^{c} \cap C$. What does event $A \cap B^{c} \cap C$ represent in the context of the experiment?
$A \cap B^{c} \cap C=\left(A \cap B^{c}\right) \cap C=(\{S F F, S S F, S F S, S S S\} \cap\{F F F, F F S, S F F, S F S\}) \cap\{F F S, F S S, S F S, S S S\}$
$=\{S F F, S F S\} \cap\{F F S, F S S, S F S, S S S\}=\{S F S\}$
$A \cap B^{c} \cap C \equiv$ Component 1 functions and Component 2 does not function and Component 3 functions
(c)2016 Josh Engwer - Revised February 1, 2016

