PROBABILITY: SETS, SAMPLE SPACES, EVENTS [DEVORE 2.1]

- THE NEED FOR PROBABILITY: Life is full of processes whose outcome cannot be predicted ahead of time.
- SETS & SEQUENCES (DEFINITION): (See 2.1 Slides for examples of sets & sequences)

A set is a possibly infinite, unique, unordered list of elements.

A sequence is a possibly infinite, varying, arbitrary, ordered list of elements.

Sets are written as comma-separated lists enclosed by braces.

Sequences are written as comma-separated lists enclosed by parentheses.

Finite sequences can also be written as lists w/o commas and parentheses.

A set can contain sets or sequences: $\{(1,2), \{a,b\}, (a,c), bc, \{1,2\}\}$

Be careful with number sequences: (1, 2, 3, 4) = 1234 BUT $(12, 34) \neq 1234$

• BASIC TERMINOLOGY:

A random process is a process whose outcome cannot be predicted a priori.

An **experiment** is any observation of a random process.

The **outcomes** $\omega_1, \omega_2, \ldots$ of an experiment are the different possible results.

The sample space Ω of an experiment is the set of all possible outcomes.

An **event** *E* is a subset of the sample space: $E \subseteq \Omega$

• THE EMPTY SET: The empty set, \emptyset , is the event with no outcomes in it.

The empty set is always a subset of the sample space: $\emptyset \subseteq \Omega$

• GAMES OF CHANCE: Some experiments involve games of chance (flipping coins, rolling dice, picking cards, ...) A fair coin has an equal chance of either side showing up upon flipping.

A fair die has an equal chance of any of its sides showing up upon rolling.

Games of chance requiring a deck of cards (blackjack, poker, ...) will not be considered in this course.

• UNIONS, INTERSECTIONS, COMPLEMENTS OF EVENTS (DEFINITIONS):

The **union** of events $E \& F, E \cup F$, is the set of all outcomes in E or F.

The **intersection** of events $E \& F, E \cap F$, is the set of all outcomes in <u>E</u> and <u>F</u>.

The **complement** of event E, E^c , is the set of all outcomes <u>not in E</u>.

The **complement** of event $E \cup F$, $(E \cup F)^c$, is the set of all outcomes neither in E nor in F.

• UNIONS, INTERSECTIONS, COMPLEMENTS OF EVENTS (PROERTIES):

Let $A, B, C \subseteq \Omega$ be events of some experiment. Then:

- (S1) $(A^c)^c = A$ Complementing a Set twice is itself $A\cup B=B\cup A$ (S2)Commutativity of Unions $A \cap B = B \cap A$ (S3)Commutativity of Intersections (S4) $(A \cup B) \cup C = A \cup (B \cup C)$ Associativity of Unions (S5) $(A \cap B) \cap C = A \cap (B \cap C)$ Associativity of Intersections $(A \cup B)^c = A^c \cap B^c$ (S6)De Morgan's Law (S7) $(A \cap B)^c = A^c \cup B^c$ De Morgan's Law (S8) $A \cup \emptyset = A, \quad A \cap \emptyset = \emptyset$ Unions/Intersections with Empty Set (S9) $\Omega^c = \emptyset, \quad \emptyset^c = \Omega$ Sample Space & Empty Set are related $(S10) \quad (A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ Intersection Distributes over Union
- $(S11) \quad (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ Union Distributes over Intersection

• MUTUAL EXCLUSIVITY OF TWO EVENTS:

Events E, F are **mutually exclusive** (or **disjoint**) if they have no outcomes in common:

$E \cap F = \emptyset$

• MUTUAL EXCLUSIVITY OF THREE EVENTS:

Events E, F, G are **mutually exclusive** (or **pairwise disjoint**) if they have no outcomes in common:

 $E \cap F = \emptyset$ and $E \cap G = \emptyset$ and $F \cap G = \emptyset$

PROBABILITY: VENN DIAGRAMS OF EVENTS [DEVORE 2.1]

<u>EX 2.1.1</u> Two fair 3-sided dice are rolled. Each die has the numbers 1,2,3 on its faces.

- (a) Determine the sample space Ω for the experiment.
- (b) Find the outcomes for event $E_1 \equiv "1^{st}$ die shows 2 and 2^{nd} die shows 1".
- (c) Find the outcomes for event $E_2 \equiv$ "One die shows 2 and the other die shows 1".
- (d) List the outcomes for event $E_3 \equiv$ "Both dice show 3".
- (e) List the outcomes for event $E_4 \equiv$ "The two dice total 4".
- (f) List the outcomes for event $E_5 \equiv$ "The two dice total an even number".
- (g) Compute E_5^c . What does event E_5^c represent in the context of the experiment?
- (h) Compute $E_3 \cup E_4$. What does event $E_3 \cup E_4$ represent in the context of the experiment?
- (i) Compute $E_3 \cap E_5$. Interpret the result in the context of the experiment.
- (j) Compute $E_3 \cap E_4$. Interpret the result in the context of the experiment.
- (k) Compute $(E_3 \cup E_4)^c$. What does event $(E_3 \cup E_4)^c$ represent in the context of the experiment?

©2016 Josh Engwer – Revised February 8, 2016

EX 2.1.2: Consider the following system of connected components shown below.

Components 1 & 2 are connected in <u>series</u> with component 3 connected to them in <u>parallel</u>. For the entire system to function, either components 1 & 2 must function or component 3 must function. The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F) ailure. So, for example, the outcome for components 1 & 2 functioning but 3 not functioning would be denoted as SSF.

- (a) Determine the sample space Ω for the experiment.
- (b) Find the outcomes for event $A \equiv$ "Component 1 functions".
- (c) Find the outcomes for event $B \equiv$ "Component 2 functions".
- (d) Find the outcomes for event $C \equiv$ "Component 3 functions".
- (e) Find the outcomes for event $D \equiv$ "Exactly two components function".
- (f) List the outcomes for event $E \equiv$ "At most two components function".
- (g) List the outcomes for event $F \equiv$ "The entire system functions".
- (h) Compute F^c . What does event F^c represent in the context of the experiment?
- (i) Compute $A \cup B$. What does event $A \cup B$ represent in the context of the experiment?
- (j) Compute $A \cap B$. What does event $A \cap B$ represent in the context of the experiment?
- (k) Compute $(A \cup B)^c$. What does event $(A \cup B)^c$ represent in the context of the experiment?
- (1) Compute $A \cap B^c \cap C$. What does event $A \cap B^c \cap C$ represent in the context of the experiment?