Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.
The experiment consists of observing each component's condition and labeling it as either ( $S$ ) uccess or ( $F$ )ailure.
So, for example, the outcome for components $1 \& 2$ functioning but 3 not functioning would be denoted as $S S F$.

(a) Determine the sample space $\Omega$ for the experiment.
$\Omega=($ The set of all possible outcomes $)=\{F F F, F F S, F S F, F S S, S F F, S S F, S F S, S S S\}$
(b) Find the probability that Component 1 functions.

Let event $E_{1} \equiv "$ Component 1 functions" $=\{S F F, S S F, S F S, S S S\}$
Then $\mathbb{P}\left(E_{1}\right)=\frac{\left|E_{1}\right|}{|\Omega|}=\frac{\left(\# \text { outomes in } E_{1}\right)}{(\# \text { outcomes in } \Omega)}=\frac{4}{8}=\frac{1}{2}=0.5$
(c) Find the probability that Component 2 functions.

Let event $E_{2} \equiv "$ Component 2 functions" $=\{F S F, F S S, S S F, S S S\}$
Then $\mathbb{P}\left(E_{2}\right)=\frac{\left|E_{2}\right|}{|\Omega|}=\frac{\left(\# \text { outomes in } E_{2}\right)}{(\# \text { outcomes in } \Omega)}=\frac{4}{8}=\frac{1}{2}=0.5$
(d) Find the probability that Component 3 functions.

Let event $E_{3} \equiv$ "Component 3 functions" $=\{F F S, F S S, S F S, S S S\}$
Then $\mathbb{P}\left(E_{3}\right)=\frac{\left|E_{3}\right|}{|\Omega|}=\frac{\left(\# \text { outomes in } E_{3}\right)}{(\# \text { outcomes in } \Omega)}=\frac{4}{8}=\frac{1}{2}=0.5$
(e) Find the probability that the entire system functions.

Let event $E_{4} \equiv "$ Entire system functions" $=\{S S F, F F S, S F S, F S S, S S S\}$
Then $\mathbb{P}\left(E_{4}\right)=\frac{\left|E_{4}\right|}{|\Omega|}=\frac{\left(\# \text { outomes in } E_{4}\right)}{(\# \text { outcomes in } \Omega)}=\frac{5}{8}=0.625$
(f) Find the probability that the entire system does not function.
$\mathbb{P}\left(E_{4}^{c}\right)=1-\mathbb{P}\left(E_{4}\right)=1-0.625=0.375$
(g) Find the probability that Component 1 functions and Component 2 functions.

Unfortunately, there's no direct formula for an intersection, so compute its probability via measures:
$\mathbb{P}\left(E_{1} \cap E_{2}\right)=\frac{\left|E_{1} \cap E_{2}\right|}{|\Omega|}=\frac{|\{S S F, S S S\}|}{|\Omega|}=\frac{2}{8}=\frac{1}{4}=0.25$
(h) Find the probability that Component 1 functions or Component 2 functions.
$\mathbb{P}\left(E_{1} \cup E_{2}\right)=\mathbb{P}\left(E_{1}\right)+\mathbb{P}\left(E_{2}\right)-\mathbb{P}\left(E_{1} \cap E_{2}\right)=0.5+0.5-0.25=0.75$
(i) Find the probability that neither Component 1 nor Component 2 function.
$\mathbb{P}\left[\left(E_{1} \cup E_{2}\right)^{c}\right]=1-\mathbb{P}\left(E_{1} \cup E_{2}\right)=1-0.75=0.25$
(j) Find the probability that Components $1 \& 3$ both function but not Component 2 .

Unfortunately, there's no direct formula for an intersection, so compute its probability via measures:

$$
\begin{gathered}
E_{1} \cap E_{2}^{c} \cap E_{3}=\left(E_{1} \cap E_{2}^{c}\right) \cap E_{3}=(\{S F F, S S F, S F S, S S S\} \cap\{F F F, F F S, F S F, S F F, S F S\}) \cap\{F F S, F S S, S F S, S S S\} \\
=\{S F S\} \cap\{F F S, F S S, S F S, S S S\}=\{S F S\} \\
\mathbb{P}\left(E_{1} \cap E_{2}^{c} \cap E_{3}\right)=\frac{\left|E_{1} \cap E_{2}^{c} \cap E_{3}\right|}{|\Omega|}=\frac{|\{S F S\}|}{|\Omega|}=\frac{1}{8}=0.125
\end{gathered}
$$

80 students are taking French
60 students are taking German
75 students are taking Spanish
18 students are taking French \& German
13 students are taking German \& Spanish
23 students are taking French \& Spanish
4 students are taking French, German \& Spanish
How many students are not taking French, German or Spanish?

First, realize that the experiment is determining which foreign language course(s), if any, a student takes.
Second, realize that the sample space $\Omega$ for the experiment is the 200 students.

## METHOD 1: DIRECTLY APPLY PRINCIPLE OF INCLUSION-EXCLUSION

$$
\mathbb{P}(F \cup G \cup S)=\mathbb{P}(F)+\mathbb{P}(G)+\mathbb{P}(S)-\mathbb{P}(F \cap G)-\mathbb{P}(G \cap S)-\mathbb{P}(F \cap S)+\mathbb{P}(F \cap G \cap S)
$$

Multiply both sides by $|\Omega|$ :

$$
\begin{aligned}
|F \cup G \cup S| & =|F|+|G|+|S|-|F \cap G|-|G \cap S|-|F \cap S|+|F \cap G \cap S| \\
& =80+60+75-18-13-23+4=165
\end{aligned}
$$

$\therefore \quad\left(\#\right.$ Students not taking French, German or Spanish) $=\left|(F \cup G \cup S)^{c}\right|=|\Omega|-|F \cup G \cup S|=200-165=35$

## METHOD 2: CONSTRUCT \& POPULATE A CLEVER VENN DIAGRAM

(THIS IS EXTREMELY USEFUL IF INCLUSION-EXCLUSION FORMULA IS NOT PROVIDED)

Determine the measure of each disjoint piece of $F \cup G \cup S$ using a Venn Diagram working inside outward:


Now compute the measure of $F \cup G \cup S$ by simply adding the found disjoint measures:

$$
|F \cup G \cup S|=43+14+33+19+4+9+43=165
$$

$\therefore \quad\left(\right.$ \# Students not taking French, German or Spanish) $=\left|(F \cup G \cup S)^{c}\right|=|\Omega|-|F \cup G \cup S|=200-165=35$

