(a) If three books are randomly selected such that the subjects all differ, how many selections are possible?

This is a 3-stage experiment: Randomly select a math book, and then select an art book, and then select a chess book.
$\therefore \quad(\#$ Selections possible $)=(\#$ math books $) \times(\#$ art books $) \times(\#$ chess books $)=(4)(9)(5)=180$
(b) If two books are randomly selected such that the subjects differ, how many selections are possible?

This is a 2-stage experiment: Randomly select a book, and then select a book of a different subject.
Consider the events: $E_{1} \equiv\left(\right.$ Math book \& Art book),$E_{2} \equiv\left(\right.$ Math book \& Chess book), $E_{3} \equiv$ (Art book \& Chess book)
Then, an example outcome from each event is: $\quad\left(M_{2}, A_{8}\right) \in E_{1}, \quad\left(M_{2}, C_{3}\right) \in E_{2}, \quad\left(A_{7}, C_{2}\right) \in E_{3}$
where $M_{2} \equiv\left(2^{\text {nd }}\right.$ math book), $A_{8} \equiv\left(8^{\text {th }}\right.$ art book $), C_{3} \equiv\left(3^{r d}\right.$ chess book $)$, etc...
Moreover, events E_{1}, E_{2}, E_{3} are all pairwise disjoint since each intersection contains no ordered pairs in common:

$$
E_{1} \cap E_{2}=\emptyset, \quad E_{1} \cap E_{3}=\emptyset, \quad E_{2} \cap E_{3}=\emptyset
$$

$\therefore \quad(\#$ Selections possible $)=\left|E_{1} \cup E_{2} \cup E_{3}\right|=\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|=(4)(9)+(9)(5)+(4)(5)=101$

EX 2.3.3: How many 5-letter words can be formed from the English alphabet? (The words need not make sense.)

This a 5-stage experiment:
Select a letter for $1^{s t}$ position, and then select a letter for $2^{\text {nd }}$ position, \ldots, and then select a letter for $5^{t h}$ position.
IF LETTERS CAN BE REUSED (i.e. DUPLICATES/REPETITION ALLOWED):
$\therefore(\#$ Words $)=(26)(26)(26)(26)(26)=26^{5}=11,881,376$
IF LETTERS CANNOT BE REUSED (i.e. DUPLICATES/REPETITION NOT ALLOWED):
$\therefore(\#$ Words $)=(26)(25)(24)(23)(22)=7,893,600$

- OR -
$P_{5}^{26}=\frac{26!}{(26-5)!}=\frac{26!}{21!}=\frac{(26)(25)(24)(23)(22)(21)(20) \cdots(3)(2)(1)}{(21)(20) \cdots(3)(2)(1)}=(26)(25)(24)(23)(22)=7,893,600$

EX 2.3.4: How many ways can one select ten apples from a bin of 25 identical apples?

Since the apples are all identical, order does not matter!
Therefore, the counting requires a combination:

$$
(\# \text { Ways })=\binom{25}{10}=\frac{25!}{10!(25-10)!}=\frac{25!}{10!15!}=\frac{(25)(24)(23)(22)(21)(20)(19)(18)(17)(16)}{(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)}=3,268,760
$$

EX 2.3.6: How many ways can one arrange the letters of the word MISSISSIPPI ?

In this context, order does matter! Thus, permutation(s) are necessary.
Moreover, the permutations have same \# elements as given word. Thus, the permutations are full permutations.
Hence, the total full permutations (11-permutations) of MISSISSIPPI is $P_{11}^{11}=\frac{11!}{(11-11)!}=\frac{11!}{0!}=\frac{11!}{1}=11$!
But, some of the letters are identical!! Thus, irrelevant permutations must be divided out of the total permutations:

IDENTICAL LETTER(S)	\# FULL PERMUTATIONS
The one M	$1!$
The four I's	$4!$
The four S's	$4!$
The two P's	$2!$

$$
\therefore(\# \text { Ways })=\frac{11!}{1!4!4!2!}=\frac{(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)}{[(1)][(4)(3)(2)(1)][(4)(3)(2)(1)][(2)(1)]}=(11)(10)(9)(7)(5)=34,650
$$

