PROBABILITY: TUPLES, PERMUTATIONS, COMBINATIONS [DEVORE 2.3]

• **COUNTING TUPLES:** Given a set of *k*-tuples such that:

there are there are there are : there are there are	$egin{array}{c} n_1 \ n_2 \ n_3 \ dots \ n_{k-1} \ n_k \end{array}$	possible choices for the possible choices for the possible choices for the 	1^{st} 2^{nd} 3^{rd} \vdots $(k-1)^{st}$ k^{th}	element, element, : element, element.			
Then the # of possible k-tuples is: $\prod_{j=1}^{k} n_j = n_1 n_2 n_3 \cdots n_{k-1} n_k$							
• FACTORIALS: Let k be a non-negative integer. Then: $k! := k(k-1)(k-2)\cdots(4)(3)(2)(1)$							

0! := 1

0!	=	1	=	1
1!	=	(1)	=	1
2!	=	(2)(1)	=	2
3!	=	(3)(2)(1)	=	6
4!	=	(4)(3)(2)(1)	=	24
5!	=	(5)(4)(3)(2)(1)	=	120
÷		:		÷

• <u>COUNTING PERMUTATIONS</u>: Let k, n be integers such that $0 \le k \le n$. Then the # of k-permutations of an n-element set is: $P_k^n := \frac{n!}{(n-k)!}$

• FACTORIALS IN THE CONTEXT OF PERMUTATIONS: *n*! is the *#* of *n*-permutations of an *n*-element set.

• <u>COUNTING COMBINATIONS</u>: Let k, n be integers such that $0 \le k \le n$. Then the # of k-combinations of an n-element set is: $\binom{n}{k} := \frac{n!}{k!(n-k)!}$

C2016 Josh Engwer – Revised February 5, 2016

EX 2.3.1: A library shelf has books from three subjects: 4 math books, 9 art books, and 5 chess books.

- (a) If three books are randomly selected such that the subjects all differ, how many selections are possible?
- (b) If two books are randomly selected such that the subjects differ, how many selections are possible?

<u>EX 2.3.2</u> Thirty runners compete in a 10K race with three medals. How many ways can the medals be awarded?

EX 2.3.3: How many 5-letter words can be formed from the English alphabet? (The words need not make sense.)

EX 2.3.4: How many ways can one select ten apples from a bin of 25 identical apples?

EX 2.3.5: How many ways are there to appoint a committee of 4 women & 3 men from a group of 20 women & 25 men?

EX 2.3.6: How many ways can one arrange the letters of the word *MISSISSIPPI* ?

©2016 Josh Engwer – Revised February 5, 2016