PROBABILITY: CONDITIONING, BAYES' THEOREM [DEVORE 2.4]

- CONDITIONAL PROBABILITY: Let events E, F be events in the sample space Ω of an experiment. Then:

The conditional probability of F given $E, \mathbb{P}(F \mid E)$, is the probability of event F assuming E has already occurred. The conditional probability of E given $F, \mathbb{P}(E \mid F)$, is the probability of event E assuming F has already occurred.

WARNING: Order matters: in general, $\mathbb{P}(F \mid E) \neq \mathbb{P}(E \mid F)$

- CONDITIONAL PROBABILITY: Let events E, F be events in the sample space Ω such that $\mathbb{P}(E)>0$. Then:

$$
\mathbb{P}(\text { If } E \text { then } F)=\mathbb{P}(F \text { given } E)=\mathbb{P}(F \mid E):=\frac{|E \cap F|}{|E|}=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}
$$

- INTERSECTION OF EVENTS: Let events E, F be events in the sample space Ω of an experiment. Then:

$$
\mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F \mid E)=\mathbb{P}(F) \cdot \mathbb{P}(E \mid F)
$$

- PARTITIONING A SAMPLE SPACE: Events $E_{1}, E_{2}, \ldots, E_{k} \subseteq \Omega$ partition sample space Ω if:

$$
E_{1}, E_{2}, \ldots, E_{k} \text { are pairwise disjoint } \text { AND } \bigcup_{i=1}^{k} E_{i}=\Omega
$$

Think of the sample space Ω as a puzzle \& the partitioning events $E_{1}, E_{2}, \ldots, E_{k}$ as the puzzle pieces.

Events $E_{1}, E_{2}, E_{3}, E_{4}$ partition sample space Ω.

- LAW OF TOTAL PROBABILITY (LTP): Let events E_{1}, \ldots, E_{k} partition sample space Ω. Then

$$
\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \cap E_{i}\right)=\mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)
$$

In practice, it's less tedious to work with the middle form involving intersections rather than right-most form.

- BAYES' THEOREM: Let events $E_{1}, \ldots, E_{k} \subseteq \Omega$ partition sample space Ω. Then

$$
\mathbb{P}\left(E_{j} \mid F\right)=\frac{\mathbb{P}\left(F \cap E_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(F \cap E_{i}\right)}=\frac{\mathbb{P}\left(F \mid E_{j}\right) \cdot \mathbb{P}\left(E_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)} \quad \text { for } \quad j=1,2, \ldots, k
$$

In practice, it's less tedious to work with the middle form involving intersections rather than right-most form.
Moreover, it's often far easier to directly work with the Law of Total Probability than directly with Bayes' Theorem.

PROBABILITY: PROBABILITY TREES [DEVORE 2.4]

Events F_{1}, F_{2}, F_{3} must partition the sample space Ω.

Events E_{1}, E_{2}, E_{3} must partition the sample space Ω.

PROBABILITY: JOINT PROBABILITY TABLES [DEVORE 2.4]

2-STAGE EXPERIMENTS \& 2-WAY JOINT PROBABILITY TABLES:

	F	F^{c}	TOTAL
E	$\mathbb{P}(E \cap F)$	$\mathbb{P}\left(E \cap F^{c}\right)$	$\mathbb{P}(E)$
E^{c}	$\mathbb{P}\left(E^{c} \cap F\right)$	$\mathbb{P}\left(E^{c} \cap F^{c}\right)$	$\mathbb{P}\left(E^{c}\right)$
TOTAL	$\mathbb{P}(F)$	$\mathbb{P}\left(F^{c}\right)$	(DON'T CARE)

	F_{1}	F_{2}	F_{2}	TOTAL
E_{1}	$\mathbb{P}\left(E_{1} \cap F_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3}\right)$	$\mathbb{P}\left(E_{1}\right)$
E_{2}	$\mathbb{P}\left(E_{2} \cap F_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3}\right)$	$\mathbb{P}\left(E_{2}\right)$
E_{3}	$\mathbb{P}\left(E_{3} \cap F_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3}\right)$	$\mathbb{P}\left(E_{3}\right)$
TOTAL	$\mathbb{P}\left(F_{1}\right)$	$\mathbb{P}\left(F_{2}\right)$	$\mathbb{P}\left(F_{3}\right)$	(DON'T CARE)

Events E_{1}, E_{2}, E_{3} must partition sample space Ω.
Events F_{1}, F_{2}, F_{3} must partition sample space Ω.

3-STAGE EXPERIMENTS \& 3-WAY JOINT PROBABILITY TABLES:

E	G	G^{c}	TOTAL
F	$\mathbb{P}(E \cap F \cap G)$	$\mathbb{P}\left(E \cap F \cap G^{c}\right)$	$\mathbb{P}(E \cap F)$
F^{c}	$\mathbb{P}\left(E \cap F^{c} \cap G\right)$	$\mathbb{P}\left(E \cap F^{c} \cap G^{c}\right)$	$\mathbb{P}\left(E \cap F^{c}\right)$
TOTAL	$\mathbb{P}(E \cap G)$	$\mathbb{P}\left(E \cap G^{c}\right)$	(DON'T CARE)

E^{c}	G	G^{c}	TOTAL
F	$\mathbb{P}\left(E^{c} \cap F \cap G\right)$	$\mathbb{P}\left(E^{c} \cap F \cap G^{c}\right)$	$\mathbb{P}\left(E^{c} \cap F\right)$
F^{c}	$\mathbb{P}\left(E^{c} \cap F^{c} \cap G\right)$	$\mathbb{P}\left(E^{c} \cap F^{c} \cap G^{c}\right)$	$\mathbb{P}\left(E^{c} \cap F^{c}\right)$
TOTAL	$\mathbb{P}\left(E^{c} \cap G\right)$	$\mathbb{P}\left(E^{c} \cap G^{c}\right)$	(DON'T CARE)

E_{1}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap G_{3}\right)$	(DON'T TARE)

E_{2}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap G_{3}\right)$	(DON'T CARE)

E_{3}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap G_{3}\right)$	(DON'T CARE)

Events E_{1}, E_{2}, E_{3} must partition sample space Ω.
Events F_{1}, F_{2}, F_{3} must partition sample space Ω.
Events G_{1}, G_{2}, G_{3} must partition sample space Ω.

Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.
The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F)ailure. So, for example, the outcome for components $1 \& 2$ functioning but 3 not functioning would be denoted as $S S F$.

(a) Determine the sample space Ω for the experiment.
(b) Find the probability that Component 1 functions.
(c) Find the probability that Component 2 functions.
(d) Find the probability that the entire system functions.
(e) Find the probability that Component 1 functions given the entire system functions. Interpret result in context.
(f) Find the probability that if Component 2 functions then Component 1 functions. Interpret result in context.
(g) Find the probability that Components $1 \& 2$ both function given entire system functions. Interpret result.
(h) Find the probability that Component 1 functions or Component 2 functions given entire system functions.
(a) Identify the events \& probabilities that are given.
(b) Construct a probability tree representing the experiment. Label all relevant events \& probabilities.
(c) What is the probability of a person in the village having the virus?
(d) What is the probability of a person testing positive for the virus given the person has the virus?
(e) What is the probability that if a person has the virus then the person tests negative for the virus?
(f) What is the probability that a person has the virus and tests negative for the virus?
(g) What is the probability that a person has the virus given the person tests positive for the virus?
(h) What is the probability that a person does not have the virus given the person tests negative for the virus?
8% of the short students have blue eyes
11.5% of the short students have brown eyes
9% of the short students have green eyes
15.5% of the short students have hazel eyes
13.5% of the tall students have blue eyes 10.5% of the tall students have brown eyes
22% of the tall students have green eyes
10% of the tall students have hazel eyes
(a) Construct the joint probability table, label all relevant events \& probabilities, including the column totals \& row totals.
(b) Find the probability that a student is tall and have brown eyes.
(c) Find the probability that a student is short.
(d) Find the probability that a student has hazel eyes.
(e) Find the probability that a student has green eyes given the student is tall.
(f) Find the probability that if a student has blue eyes then the student is short.
(g) Find the probability that a student has blue eyes or hazel eyes.
(h) Find the probability that a student has green eyes or hazel eyes given the student is tall.
(i) Find the probability that a student is tall given the student has green eyes or hazel eyes.
(j) Find the probability that a student has green eyes or blue eyes or brown eyes given the student is short.

