Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.
The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F)ailure.
So, for example, the outcome for components $1 \& 2$ functioning but 3 not functioning would be denoted as $S S F$.

(a) Determine the sample space Ω for the experiment.
$\Omega=$ (The set of all possible outcomes) $=\{F F F, F F S, F S F, F S S, S F F, S S F, S F S, S S S\}$
(b) Are the events "Component 1 functions" \& "Component 2 functions" independent? (Justify answer.)

Let $A \equiv "$ Component 1 functions" $=\{S F F, S S F, S F S, S S S\} \Longrightarrow \mathbb{P}(A)=\frac{|A|}{|\Omega|}=\frac{4}{8}=\frac{1}{2}$
Let $B \equiv "$ Component 2 functions" $=\{F S F, F S S, S S F, S S S\} \Longrightarrow \mathbb{P}(B)=\frac{|B|}{|\Omega|}=\frac{4}{8}=\frac{1}{2}$
Then $A \cap B=\{S S F, S S S\} \Longrightarrow \mathbb{P}(A \cap B)=\frac{|A \cap B|}{|\Omega|}=\frac{2}{8}=\frac{1}{4} . \quad$ Moreover, $\mathbb{P}(A) \cdot \mathbb{P}(B)=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}=\mathbb{P}(A \cap B)$
\therefore Since $\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)$, the two events are independent.
(c) Are the events "Component 1 functions" \& "Exactly two components function" independent? (Justify answer.)

Let $D \equiv$ "Exactly two components function" $=\{F S S, S S F, S F S\} \Longrightarrow \mathbb{P}(D)=\frac{|D|}{|\Omega|}=\frac{3}{8}$
Then $A \cap D=\{S S F, S F S\} \Longrightarrow \mathbb{P}(A \cap D)=\frac{|A \cap D|}{|\Omega|}=\frac{2}{8}=\frac{1}{4}$. Moreover, $\mathbb{P}(A) \cdot \mathbb{P}(D)=\left(\frac{1}{2}\right)\left(\frac{3}{8}\right)=\frac{3}{16} \neq \mathbb{P}(A \cap D)$
\therefore Since $\mathbb{P}(A \cap D) \neq \mathbb{P}(A) \cdot \mathbb{P}(D)$, the two events are not independent.
(d) Do the three components function independently of one another? (Justify answer.)

Let $C \equiv "$ Component 3 functions" $=\{F S S, F F S, S F S, S S S\} \Longrightarrow \mathbb{P}(C)=\frac{|C|}{|\Omega|}=\frac{4}{8}=\frac{1}{2}$
$A \cap C=\{S F S, S S S\} \Longrightarrow \mathbb{P}(A \cap C)=\frac{|A \cap C|}{|\Omega|}=\frac{2}{8}=\frac{1}{4}$
$B \cap C=\{F S S, S S S\} \Longrightarrow \mathbb{P}(B \cap C)=\frac{|B \cap C|}{|\Omega|}=\frac{2}{8}=\frac{1}{4}$
$A \cap B \cap C=\{S S S\} \Longrightarrow \mathbb{P}(A \cap B \cap C)=\frac{|A \cap B \cap C|}{|\Omega|}=\frac{1}{8}$
Therefore:

$$
\begin{array}{rlrl}
\mathbb{P}(A \cap B) & \frac{1}{4} & \mathbb{P}(A) \cdot \mathbb{P}(B) & = \\
\mathbb{P}(A \cap C) & \left.=\frac{1}{4}\right)\left(\frac{1}{2}\right)=\frac{1}{4} \\
\mathbb{P}(B \cap C) & =\frac{1}{4} & \mathbb{P}(A) \cdot \mathbb{P}(C) & = \\
\left.\mathbb{P}(A \cap B \cap C)=\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4} \\
& \mathbb{P}(B) \cdot \mathbb{P}(C) & =\quad\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4} \\
& \mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C) & =\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{8}
\end{array}
$$

\therefore Since $\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B), \mathbb{P}(A \cap C)=\mathbb{P}(A) \cdot \mathbb{P}(C), \mathbb{P}(B \cap C)=\mathbb{P}(B) \cdot \mathbb{P}(C)$, and $\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C)$,

[^0]Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.

Suppose the components work independently of one another. Moreover, suppose that:
Component 1 works 95% of the time, Component 2 works 97% of the time, and Component 3 works 91% of the time.
What is the probability that the entire system works?

Let $A \equiv "$ Component 1 works",	$B \equiv "$ Component 2 works", $\quad C \equiv "$ Component 3 works"	
	$\mathbb{P}(A)=0.95$	$\mathbb{P}(B)=0.97$
Then:	$\mathbb{P}\left(A^{c}\right)=0.05$	$\mathbb{P}\left(B^{c}\right)=0.03$

$(I N D)$ "The components work independently of one another" means events A, B, C are mutually independent.
$\therefore \mathbb{P}($ Entire System Works $)=\mathbb{P}\left[(A \cap B \cap C) \cup\left(A^{c} \cap B^{c} \cap C\right) \cup\left(A \cap B^{c} \cap C\right) \cup\left(A^{c} \cap B \cap C\right) \cup\left(A \cap B \cap C^{c}\right)\right]$

$$
\begin{array}{ll}
\stackrel{P D}{=} & \mathbb{P}(A \cap B \cap C)+\mathbb{P}\left(A^{c} \cap B^{c} \cap C\right)+\mathbb{P}\left(A \cap B^{c} \cap C\right)+\mathbb{P}\left(A^{c} \cap B \cap C\right)+\mathbb{P}\left(A \cap B \cap C^{c}\right) \\
\stackrel{I N D}{=} & \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)+\mathbb{P}\left(A^{c}\right) \mathbb{P}\left(B^{c}\right) \mathbb{P}(C)+\mathbb{P}(A) \mathbb{P}\left(B^{c}\right) \mathbb{P}(C)+\mathbb{P}\left(A^{c}\right) \mathbb{P}(B) \mathbb{P}(C)+\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}\left(C^{c}\right) \\
= & (0.95)(0.97)(0.91)+(0.05)(0.03)(0.91)+(0.95)(0.03)(0.91)+(0.05)(0.97)(0.91)+(0.95)(0.97)(0.09) \\
= & \mathbf{0 . 9 9 2 9 3 5}
\end{array}
$$

ALTERNATIVELY

$\therefore \mathbb{P}($ Entire System Works $)=1-\mathbb{P}($ Entire System does not Work $)$

$$
=\quad 1-\mathbb{P}\left[\left(A^{c} \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \cup\left(A \cap B^{c} \cap C^{c}\right)\right]
$$

$$
\stackrel{P D}{=} \quad 1-\left[\mathbb{P}\left(A^{c} \cap B^{c} \cap C^{c}\right)+\mathbb{P}\left(A^{c} \cap B \cap C^{c}\right)+\mathbb{P}\left(A \cap B^{c} \cap C^{c}\right)\right]
$$

$$
\stackrel{I N D}{=} \quad 1-\left[\mathbb{P}\left(A^{c}\right) \mathbb{P}\left(B^{c}\right) \mathbb{P}\left(C^{c}\right)+\mathbb{P}\left(A^{c}\right) \mathbb{P}(B) \mathbb{P}\left(C^{c}\right)+\mathbb{P}(A) \mathbb{P}\left(B^{c}\right) \mathbb{P}\left(C^{c}\right)\right]
$$

$$
=\quad 1-[(0.05)(0.03)(0.09)+(0.05)(0.97)(0.09)+(0.95)(0.03)(0.09)]
$$

$$
=1-0.007065
$$

$=0.992935$ (The moral here is that sometimes it's less tedious to work with the complement.)

[^0]: the three components do function independently of one another.

