<u>EX 2.5.1</u>: Consider the following system of connected components shown below.

Components 1 & 2 are connected in series with component 3 connected to them in parallel.

For the entire system to function, either components 1 & 2 must function or component 3 must function.

The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F) ailure.

So, for example, the outcome for components 1 & 2 functioning but 3 not functioning would be denoted as SSF.

- (a) Determine the sample space Ω for the experiment.
 - $\Omega = (\text{The set of all possible outcomes}) = | \{FFF, FFS, FSF, FSS, SFF, SSF, SSS\}$
- (b) Are the events "Component 1 functions" & "Component 2 functions" independent? (Justify answer.) Let $A \equiv$ "Component 1 functions" = {SFF, SSF, SFS, SSS} $\implies \mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{4}{8} = \frac{1}{2}$ Let $B \equiv$ "Component 2 functions" = {FSF, FSS, SSF, SSS} $\implies \mathbb{P}(B) = \frac{|B|}{|\Omega|} = \frac{4}{8} = \frac{1}{2}$ Then $A \cap B = \{SSF, SSS\} \implies \mathbb{P}(A \cap B) = \frac{|A \cap B|}{|\Omega|} = \frac{2}{8} = \frac{1}{4}$. Moreover, $\mathbb{P}(A) \cdot \mathbb{P}(B) = (\frac{1}{2})(\frac{1}{2}) = \frac{1}{4} = \mathbb{P}(A \cap B)$ \therefore Since $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$, the two events are independent.
- (c) Are the events "Component 1 functions" & "Exactly two components function" independent? (Justify answer.) Let $D \equiv$ "Exactly two components function" = {FSS, SSF, SFS} $\implies \mathbb{P}(D) = \frac{|D|}{|\Omega|} = \frac{3}{8}$ Then $A \cap D = \{SSF, SFS\} \implies \mathbb{P}(A \cap D) = \frac{|A \cap D|}{|\Omega|} = \frac{2}{8} = \frac{1}{4}$. Moreover, $\mathbb{P}(A) \cdot \mathbb{P}(D) = \left(\frac{1}{2}\right) \left(\frac{3}{8}\right) = \frac{3}{16} \neq \mathbb{P}(A \cap D)$
 - \therefore Since $\mathbb{P}(A \cap D) \neq \mathbb{P}(A) \cdot \mathbb{P}(D)$, the two events are not independent.

(d) Do the three components function independently of one another? (Justify answer.) Let $C \equiv$ "Component 3 functions" = {FSS, FFS, SFS, SSS} $\implies \mathbb{P}(C) = \frac{|C|}{|\Omega|} = \frac{4}{8} = \frac{1}{2}$ $A \cap C = \{SFS, SSS\} \implies \mathbb{P}(A \cap C) = \frac{|A \cap C|}{|\Omega|} = \frac{2}{8} = \frac{1}{4}$ $B \cap C = \{FSS, SSS\} \implies \mathbb{P}(B \cap C) = \frac{|B \cap C|}{|\Omega|} = \frac{2}{8} = \frac{1}{4}$ $A \cap B \cap C = \{SSS\} \implies \mathbb{P}(A \cap B \cap C) = \frac{|A \cap B \cap C|}{|\Omega|} = \frac{1}{8}$ Therefore:

 $\mathbb{P}(A \cap B) = \frac{1}{4}$ $\mathbb{P}(A \cap C) = \frac{1}{4}$ $\mathbb{P}(B \cap C) = \frac{1}{4}$ $\mathbb{P}(B \cap C) = \frac{1}{4}$ $\mathbb{P}(B) \cdot \mathbb{P}(C) = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{4}$ $\mathbb{P}(B) \cdot \mathbb{P}(C) = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{4}$ $\mathbb{P}(A \cap B \cap C) = \frac{1}{8}$ $\mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C) = \frac{1}{2} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{8}$

 $\therefore \text{ Since } \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B), \ \mathbb{P}(A \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(C), \ \mathbb{P}(B \cap C) = \mathbb{P}(B) \cdot \mathbb{P}(C), \text{ and } \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C),$ the three components <u>do</u> function independently of one another.

©2016 Josh Engwer – Revised February 9, 2016

<u>EX 2.5.2</u> Consider the following system of connected components shown below.

Components 1 & 2 are connected in series with component 3 connected to them in parallel.

For the entire system to function, either components 1 & 2 must function or component 3 must function.

Suppose the components work independently of one another. Moreover, suppose that:

Component 1 works 95% of the time, Component 2 works 97% of the time, and Component 3 works 91% of the time.

What is the probability that the entire system works?

Let $A \equiv$ "Component 1 works",		$B \equiv$ "Component 2 works"	", $C \equiv$ "Component 3 works"
Then:	$\mathbb{P}(A) = 0.95$	$\mathbb{P}(B) = 0.97$	$\mathbb{P}(C) = 0.91$
	$\mathbb{P}(A^c) = 0.05$	$\mathbb{P}(B^c) = 0.03$	$\mathbb{P}(C^c) = 0.09$

(IND) "The components work independently of one another" means events A, B, C are mutually independent.

\therefore $\mathbb{P}(\text{Entire System Works})$	=	$\mathbb{P}[(A \cap B \cap C) \cup (A^c \cap B^c \cap C) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B \cap C^c)]$
	$\stackrel{PD}{=}$	$\mathbb{P}(A \cap B \cap C) + \mathbb{P}(A^c \cap B^c \cap C) + \mathbb{P}(A \cap B^c \cap C) + \mathbb{P}(A^c \cap B \cap C) + \mathbb{P}(A \cap B \cap C^c)$
	$\stackrel{IND}{\equiv}$	$\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) + \mathbb{P}(A^c)\mathbb{P}(B^c)\mathbb{P}(C) + \mathbb{P}(A)\mathbb{P}(B^c)\mathbb{P}(C) + \mathbb{P}(A^c)\mathbb{P}(B)\mathbb{P}(C) + \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C^c)$
	=	(0.95)(0.97)(0.91) + (0.05)(0.03)(0.91) + (0.95)(0.03)(0.91) + (0.05)(0.97)(0.91) + (0.95)(0.97)(0.09)
		0.000025