PROBABILITY: INDEPENDENCE OF EVENTS [DEVORE 2.5]

- INDEPENDENCE OF TWO EVENTS (DEFINITION):

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment.
Then $E \& F$ are independent if $\mathbb{P}(E \mid F)=\mathbb{P}(E)$.

- INDEPENDENCE OF TWO EVENTS (PROPERTY):

Events $E \& F$ are independent if and only if $\quad \mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F)$

- INDEPENDENCE OF COMPLEMENTS OF TWO EVENTS:

Events $E \& F$ are independent if and only if $E^{c} \& F^{c}$ are independent.
Events $E \& F$ are independent if and only if $E^{c} \& F$ are independent.
Events $E \& F$ are independent if and only if $E \& F^{c}$ are independent.

- INDEPENDENCE OF THREE EVENTS (DEFINITION):

Let $E_{1}, E_{2}, E_{3} \subseteq \Omega$ be three events from sample space Ω of an experiment.
Then E_{1}, E_{2}, E_{3} are (mutually) independent if the following are all true:

$$
\begin{aligned}
\mathbb{P}\left(E_{1} \cap E_{2}\right) & =\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3}\right) & =\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3}\right) & =\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3}\right) & =\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right)
\end{aligned}
$$

Note that any of the mutually independent events E_{1}, E_{2}, E_{3} can be replaced by their corresponding complements and still remain mutually independent:

$$
\begin{aligned}
& \mathbb{P}\left(E_{1} \cap E_{2}^{c}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right), \quad \mathbb{P}\left(E_{1}^{c} \cap E_{2}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}\right), \quad \mathbb{P}\left(E_{1}^{c} \cap E_{2}^{c}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right), \quad \text { etc... } \\
& \quad \mathbb{P}\left(E_{1} \cap E_{2}^{c} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right) \cdot \mathbb{P}\left(E_{3}\right), \quad \mathbb{P}\left(E_{1}^{c} \cap E_{2} \cap E_{3}^{c}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}^{c}\right), \quad \text { etc... }
\end{aligned}
$$

- INDEPENDENCE OF FOUR EVENTS (DEFINITION):

Let $E_{1}, E_{2}, E_{3}, E_{4} \subseteq \Omega$ be four events from sample space Ω of an experiment.
Then $E_{1}, E_{2}, E_{3}, E_{4}$ are (mutually) independent if the following are all true:

$$
\begin{gathered}
\mathbb{P}\left(E_{1} \cap E_{2}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{2} \cap E_{4}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right)
\end{gathered}
$$

Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.
The experiment consists of observing each component's condition and labeling it as either (S) uccess or (F)ailure. So, for example, the outcome for components $1 \& 2$ functioning but 3 not functioning would be denoted as $S S F$.

(a) Determine the sample space Ω for the experiment.
(b) Are the events "Component 1 functions" \& "Component 2 functions" independent? (Justify answer.)
(c) Are the events "Component 1 functions" \& "Exactly two components function" independent? (Justify answer.)
(d) Do the three components function independently of one another? (Justify answer.)

Components $1 \& 2$ are connected in series with component 3 connected to them in parallel.
For the entire system to function, either components $1 \& 2$ must function or component 3 must function.

Suppose the components work independently of one another. Moreover, suppose that:
Component 1 works 95% of the time, Component 2 works 97% of the time, and Component 3 works 91% of the time.
What is the probability that the entire system works?

