Let random variable $X \equiv$ (\# Heads Observed)
Let random variable $Y \equiv$ (\# Tails Observed)
Let random variable $Z \equiv$ (Is at least One Tail Observed? $\quad(1=$ Yes, $0=$ No))
Let random variable $W \equiv$ (\# Heads Observed Minus \# Tails Observed)
(a) List all the possible outcomes in the sample space Ω for the experiment.
$\Omega=\{H H, H T, T H, T T\}$
(b) For each outcome in the sample space Ω, determine the associated value of each random variable X, Y, Z, W.

$$
\begin{array}{clcc}
X(H H)=2 & Y(H H)=0 & Z(H H)=0 & W(H H)=2-0=2 \\
X(H T)=1 & Y(H T)=1 & Z(H T)=1 & W(H T)=1-1=0 \\
X(T H)=1 & Y(T H)=1 & Z(T H)=1 & W(T H)=1-1=0 \\
X(T T)=0 & Y(T T)=2 & Z(T T)=1 & W(T T)=0-2=-2
\end{array}
$$

(c) Determine the support of each random variable X, Y, Z, W for the experiment.
$\operatorname{Supp}(X)=\{0,1,2\} \quad \operatorname{Supp}(Y)=\{0,1,2\} \quad \operatorname{Supp}(Z)=\{0,1\} \quad \operatorname{Supp}(W)=\{-2,0,2\}$
EX 3.1.2: Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs.

$$
\begin{aligned}
& \text { Let random variable } X \equiv \text { (\# Heads Observed) } \\
& \text { Let random variable } Y \equiv \text { (\# Tails Observed) } \\
& \text { Let random variable } Z \equiv \text { (Is at least One Tail Observed? }(1=\text { Yes, } 0=\text { No)) } \\
& \text { Let random variable } W \equiv \text { (\# Heads Observed Minus \# Tails Observed) }
\end{aligned}
$$

(a) List four possible outcomes in the sample space Ω for the experiment.
$\Omega=\{T, H T, H H T, H H H T, \cdots\} \longleftarrow$ Notice that the sample space is infinite (but still countable.)
(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Y, Z, W.

$$
\begin{array}{cccc}
X(T)=0 & Y(T)=1 & Z(T)=1 & W(T)=0-1=-1 \\
X(H T)=1 & Y(H T)=1 & Z(H T)=1 & W(H T)=1-1=0 \\
X(H H T)=2 & Y(H H T)=1 & Z(H H T)=1 & W(H H T)=2-1=1 \\
X(H H H T)=3 & Y(H H H T)=1 & Z(H H H T)=1 & W(H H H T)=3-1=2 \\
\vdots & \vdots & \vdots & \vdots
\end{array}
$$

(c) Determine the support of each random variable X, Y, Z, W for the experiment.

$$
\operatorname{Supp}(X)=\{0,1,2,3,4, \cdots\} \quad \operatorname{Supp}(Y)=\{1\} \quad \operatorname{Supp}(Z)=\{1\} \quad \operatorname{Supp}(W)=\{-1,0,1,2,3,4, \cdots\}
$$

