DISCRETE RANDOM VARIABLES: INTRODUCTION [DEVORE 3.1]

• RANDOM VARIABLE (DEFINITION): Given an experiment with sample space Ω . Then:

X is a **random variable (r.v.)** for the experiment $\iff X : \Omega \to \mathbb{R}$

i.e. X is a function that maps each outcome in the sample space to a real #.

<u>NOTATION</u>: Random variables are denoted by capital letters: X, Y, Z, U, V, WSimilar random variables have subscripts: $X_1, X_2, X_3, X_4, \ldots$

- <u>SUPPORT OF A RANDOM VARIABLE</u>: The support of a random variable is the set of <u>meaningful</u> values. <u>NOTATION</u>: The support of random variable X is denoted as Supp(X).
- **DISCRETE RANDOM VARIABLES:** X is a **discrete random variable** \iff Supp(X) is countable.

i.e. The meaningful values of X comprise a subset of integers \mathbb{Z} or rationals \mathbb{Q} .

• <u>CONTINUOUS RANDOM VARIABLES</u>: X is a continuous random variable \iff Supp(X) is uncountable. i.e. The meaningful values of X comprise an interval or union of intervals or \mathbb{R} .

NOTE: Continuous random variables will be explored in Chapter 4.

• DISCRETE RANDOM VARIABLES (EXAMPLES):

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

Let random variables	$W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$
	$X \equiv$ If car has any available seats (1 = Yes, 0 = No)
	$Y \equiv$ Number of available seats in car
	$Z\equiv$ Difference in $\#$ of available and occupied seats

	W(AAA) = 1	X(AAA) = 1	Y(AAA) = 3	Z(AAA) = 3 - 0	=	3
Then:	W(AAF) = 0	X(AAF) = 1	Y(AAF) = 2	Z(AAF) = 2 - 1	=	1
	W(AFA) = 1	X(AFA) = 1	Y(AFA) = 2	Z(AFA) = 2 - 1	=	1
	W(AFF) = 0	X(AFF) = 1	Y(AFF) = 1	Z(AFF) = 1 - 2	=	-1
	W(FAA) = 1	X(FAA) = 1	Y(FAA) = 2	Z(FAA) = 2 - 1	=	1
	W(FAF) = 0	X(FAF) = 1	Y(FAF) = 1	Z(FAF) = 1 - 2	=	-1
	W(FFA) = 1	X(FFA) = 1	Y(FFA) = 1	Z(FFA) = 1 - 2	=	-1
	W(FFF) = 0	X(FFF) = 0	Y(FFF) = 0	Z(FFF) = 0 - 3	=	-3

Moreover, their supports are:	$\operatorname{Supp}(W)$	=	$\{0,1\}$	\implies	$\operatorname{Supp}(W)$ is countable $\implies W$ is discrete
	$\operatorname{Supp}(X)$	=	$\{0,1\}$	\Rightarrow	$\operatorname{Supp}(X)$ is countable $\implies X$ is discrete
	$\operatorname{Supp}(Y)$	=	$\{0, 1, 2, 3\}$	\Rightarrow	$\operatorname{Supp}(Y)$ is countable $\implies Y$ is discrete
	$\operatorname{Supp}(Z)$	=	$\{-3,-1,1,3\}$	\Rightarrow	$\operatorname{Supp}(Z)$ is countable $\implies Z$ is discrete

©2016 Josh Engwer – Revised February 11, 2016

<u>EX 3.1.1</u> Consider the following experiment: Flip two fair coins and observe their top faces.

Let random variable $X \equiv (\# \text{ Heads Observed})$ Let random variable $Y \equiv (\# \text{ Tails Observed})$ Let random variable $Z \equiv (\text{Is at least One Tail Observed}? (1 = \text{Yes, 0 = No}))$ Let random variable $W \equiv (\# \text{ Heads Observed Minus } \# \text{ Tails Observed})$

- (a) List all the possible outcomes in the sample space Ω for the experiment.
- (b) For each outcome in the sample space Ω , determine the associated value of each random variable X, Y, Z, W.

(c) Determine the support of each random variable X, Y, Z, W for the experiment.

<u>EX 3.1.2:</u> Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs.

Let random variable	X	\equiv	(# Heads Observed)
Let random variable	Y	\equiv	(# Tails Observed)
Let random variable	Z	\equiv	(Is at least One Tail Observed? $(1 = \text{Yes}, 0 = \text{No})$)
Let random variable	W	\equiv	(# Heads Observed Minus # Tails Observed)

(a) List four possible outcomes in the sample space Ω for the experiment.

(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Y, Z, W.

(c) Determine the support of each random variable X, Y, Z, W for the experiment.

^{©2016} Josh Engwer – Revised February 11, 2016