<u>EX 3.2.1</u> Consider the following experiment: Flip two fair coins and observe their top faces.

Let random variable $X \equiv (\#$ Heads Observed) Let random variable $Z \equiv ($ Is at least One Tail Observed? (1 =Yes, 0 =No))

(a) List all the possible outcomes in the sample space Ω for the experiment.

 $\Omega = \left\{ HH, HT, TH, TT \right\}$

(b) For each outcome in the sample space Ω , determine the associated value of each random variable X, Z.

$$X(HH) = 2,$$
 $X(HT) = 1,$ $X(TH) = 1,$ $X(TT) = 0$
 $Z(HH) = 0,$ $Z(HT) = 1,$ $Z(TH) = 1,$ $Z(TT) = 1$

(c) Determine the support of each random variable X, Z for the experiment.

Supp
$$(X) = \{0, 1, 2\}$$
 Supp $(Z) = \{0, 1\}$

(d) Determine the probability mass function (pmf) for each random variable X, Z.

$$\begin{cases} p_X(0) = \mathbb{P}(X=0) = \frac{|\{TT\}|}{|\Omega|} = \frac{1}{4} \\ p_X(1) = \mathbb{P}(X=1) = \frac{|\{HT, TH\}|}{|\Omega|} = \frac{1}{2} \implies \text{The pmf of r.v. } X \text{ is } \frac{k}{p_X(k)} \frac{0}{1/4} \frac{1}{2} \frac{1}{4} \\ p_X(2) = \mathbb{P}(X=2) = \frac{|\{HH\}|}{|\Omega|} = \frac{1}{4} \\ \begin{cases} p_Z(0) = \mathbb{P}(Z=0) = \frac{|\{HH\}|}{|\Omega|} = \frac{1}{4} \\ p_Z(1) = \mathbb{P}(Z=1) = \frac{|\{HT, TH, TT\}|}{|\Omega|} = \frac{3}{4} \end{cases} \implies \text{The pmf of r.v. } Z \text{ is } \frac{k}{p_Z(k)} \frac{0}{1/4} \frac{1}{3/4} \end{cases}$$

(e) Determine the cumulative distribution function (cdf) for each random variable X, Z.

$$p_X(k) = \begin{cases} 1/4 & \text{, if } k = 0 \\ 1/2 & \text{, if } k = 1 \\ 1/4 & \text{, if } k = 2 \end{cases} \implies F_X(x) = \begin{cases} 0 & \text{, if } x < 0 \\ \frac{1}{4} & \text{, if } 0 \le x < 1 \\ \frac{1}{4} + \frac{1}{2} & \text{, if } 1 \le x < 2 \\ \frac{1}{4} + \frac{1}{2} + \frac{1}{4} & \text{, if } 2 \le x \end{cases} \implies \text{cdf of } X \text{ is } F_X(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/4 & \text{, if } 0 \le x < 1 \\ 3/4 & \text{, if } 1 \le x < 2 \\ 1 & \text{, if } 2 \le x \end{cases}$$
$$p_Z(k) = \begin{cases} 1/4 & \text{, if } k = 0 \\ 3/4 & \text{, if } k = 1 \end{cases} \implies F_Z(x) = \begin{cases} 0 & \text{, if } x < 0 \\ \frac{1}{4} & \text{, if } 0 \le x < 1 \\ \frac{1}{4} + \frac{3}{4} & \text{, if } 1 \le x \end{cases} \text{cdf of } Z \text{ is } F_Z(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/4 & \text{, if } 0 \le x < 1 \\ 1 & \text{, if } 0 \le x < 1 \\ 1 & \text{, if } 1 \le x \end{cases}$$

(f) Sketch the cdf for each random variable.

©2016 Josh Engwer – Revised February 17, 2016

<u>EX 3.2.2</u> Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs. Moreover, the coins flips are independent of one another.

Let random variable $X \equiv (\#$ Heads Observed) Let random variable $Z \equiv ($ Is at least One Tail Observed? (1 =Yes, 0 =No))

(a) List four possible outcomes in the sample space Ω for the experiment.

 $\Omega = \left| \{T, HT, HHT, HHHT, \cdots \} \right|$

(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.

X(T) = 0, X(HT) = 1, X(HHT) = 2, X(HHHT) = 3, ... Z(T) = 1, Z(HT) = 1, Z(HHT) = 1, Z(HHHT) = 1, ...

(c) Determine the support of each random variable X, Z for the experiment.

 $\operatorname{Supp}(X) = \left\{ 0, 1, 2, 3, \cdots \right\} \qquad \operatorname{Supp}(Z) = \left\{ 1 \right\}$

(d) Determine the probability mass function (pmf) for each random variable X, Z.

	The pmf of r.v. X is	k	0	1	2	3	
		$p_X(k)$	1/2	1/4	1/8	1/16	

Since Supp(Z) contains exactly one value, its probability has to be one:

$$p_Z(0) = \mathbb{P}(Z=0) = 0$$
$$p_Z(1) = \mathbb{P}(Z=1) = 1$$

$$\therefore \quad \text{The pmf of r.v. } Z \text{ is } \quad \frac{k}{p_Z(k)} \begin{array}{c} 0 & 1 \\ 0 & 1 \end{array}$$

(e) Write the pmf of random variable X in <u>closed-form</u> by means of pattern recognition.

It's easier to recognize a pattern in the intermediate expression for each probability instead of its final value:

$$p_X(0) = \frac{1}{2} = \left(\frac{1}{2}\right)^2$$

$$p_X(1) = \frac{1}{2} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^2$$

$$p_X(2) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^2$$

$$p_X(3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^2$$

$$\vdots \qquad \vdots \qquad \vdots$$

 \therefore The closed-form formula for the pmf of r.v. X is $p_X(k) = \left(\frac{1}{2}\right)^{k+1}$ or $p_X(k) = 0.5^{k+1}$

SANITY CHECK:
$$\sum_{k=0}^{\infty} p_X(k) = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k+1} = \sum_{k=0}^{\infty} \frac{1}{2} \cdot \left(\frac{1}{2}\right)^k = \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \stackrel{(*)}{=} \frac{1}{2} \cdot \left(\frac{1}{1-\frac{1}{2}}\right) = \frac{1}{2} \cdot 2 = 1 \quad \checkmark$$

(*) Recall from Calculus II the sum of a convergent **geometric series**: If $a \neq 0$ and |r| < 1, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$

^{©2016} Josh Engwer – Revised February 17, 2016

<u>EX 3.2.3:</u> Consider the following experiment: Repeatedly flip an <u>unfair</u> coin and observe its top face until a tail occurs.

The coin is unfair because tails occurs twice as often as heads.

Moreover, the coins flips are independent of one another.

Let random variable $X \equiv (\#$ Heads Observed) Let random variable $Z \equiv ($ Is at least One Tail Observed? (1 =Yes, 0 =No))

(a) List four possible outcomes in the sample space Ω for the experiment.

 $\Omega = \left| \{T, HT, HHT, HHHT, \cdots \} \right|$

(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.

$$X(T) = 0,$$
 $X(HT) = 1,$ $X(HHT) = 2,$ $X(HHHT) = 3,$ \cdots
 $Z(T) = 1,$ $Z(HT) = 1,$ $Z(HHT) = 1,$ $Z(HHHT) = 1,$ \cdots

(c) Determine the support of each random variable X, Z for the experiment.

$$\operatorname{Supp}(X) = \left[\{0, 1, 2, 3, \cdots \} \right] \qquad \operatorname{Supp}(Z) = \left[\{1\} \right]$$

(d) Determine the probability mass function (pmf) for each random variable X, Z.

Since the coin is \underline{unfair} and tails occurs twice as often as heads:

$$\mathbb{P}(T) = 2 \cdot \mathbb{P}(H)$$

$$\mathbb{P}(H) + \mathbb{P}(T) = 1 \implies \mathbb{P}(H) + 2 \cdot \mathbb{P}(H) = 1 \implies 3 \cdot \mathbb{P}(H) = 1 \implies \mathbb{P}(H) = 1/3 \implies \mathbb{P}(T) = 2 \cdot \mathbb{P}(H) = 2 \cdot \frac{1}{3} = 2/3$$

$$p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(T) = 2/3$$

$$p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(HT) = \mathbb{P}(H \cap T) \stackrel{IND}{=} \mathbb{P}(H) \cdot \mathbb{P}(T) = \frac{1}{3} \cdot \frac{2}{3} = 2/9$$

$$p_X(2) = \mathbb{P}(X = 2) = \mathbb{P}(HHT) = \mathbb{P}(H \cap H \cap T) \stackrel{IND}{=} \mathbb{P}(H) \cdot \mathbb{P}(H) \cdot \mathbb{P}(T) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = 2/27$$

$$p_X(3) = \mathbb{P}(X = 3) = \mathbb{P}(HHHT) = \mathbb{P}(H \cap H \cap H \cap T) \stackrel{IND}{=} \mathbb{P}(H) \cdot \mathbb{P}(H) \cdot \mathbb{P}(T) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = 2/81$$

$$\vdots \qquad \vdots \qquad \vdots$$

.÷.	The pmf of r.v. X is	k	0	1	2	3	
		$p_X(k)$	2/3	2/9	2/27	2/81	

Since $\operatorname{Supp}(Z)$ contains exactly one value, its probability has to be one:

$$p_Z(0) = \mathbb{P}(Z=0) = 0$$

 $p_Z(1) = \mathbb{P}(Z=1) = 1$ \implies $k = 0 = 1$
 $p_Z(k) = 0 = 1$

(e) Write the pmf of random variable X in <u>closed-form</u> by means of pattern recognition.

It's easier to recognize a pattern in the intermediate expression for each probability instead of its final value:

$$p_X(0) = \frac{2}{3} = \frac{2}{3} \cdot (\frac{1}{3})^0$$

$$p_X(1) = \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3} \cdot (\frac{1}{3})^1$$

$$p_X(2) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3} \cdot (\frac{1}{3})^2$$

$$p_X(3) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3} \cdot (\frac{1}{3})^3$$

$$\vdots \qquad \vdots \qquad \vdots$$

 \therefore The closed-form formula for the pmf of r.v. X is $p_X(k) = \frac{2}{3} \cdot \left(\frac{1}{3}\right)^{\kappa}$

SANITY CHECK:
$$\sum_{k=0}^{\infty} p_X(k) = \sum_{k=0}^{\infty} \frac{2}{3} \cdot \left(\frac{1}{3}\right)^k = \frac{2}{3} \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \stackrel{(*)}{=} \frac{2}{3} \cdot \left(\frac{1}{1-\frac{1}{3}}\right) = \frac{2}{3} \cdot \frac{3}{2} = 1 \quad \checkmark$$

(*) Recall from Calculus II the sum of a convergent **geometric series**: If $a \neq 0$ and |r| < 1, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$

^{©2016} Josh Engwer – Revised February 17, 2016

<u>EX 3.2.4</u> Consider the following experiment: Flip two fair coins and observe their top faces. (pmf & cdf of X were found in EX 3.2.1)

Let random variable $X \equiv (\# \text{ Heads Observed})$

Compute the following probabilities in two ways, one way using the pmf of X and the second way using the cdf of X:

 $\mathbb{P}(\text{Exactly one heads}) = \mathbb{P}(X = 1) = p_X(1) = 1/2$ $\mathbb{P}(\text{Exactly one heads}) = \mathbb{P}(X = 1) = F_X(1) - F_X(1-) = F_X(1) - F_X(0) = 3/4 - 1/4 = 1/2$ $\mathbb{P}(\text{At most one heads}) = \mathbb{P}(X \le 1) = p_X(0) + p_X(1) = 1/4 + 1/2 = 3/4$ $\mathbb{P}(\text{At most one heads}) = \mathbb{P}(X \le 1) = F_X(1) = 3/4$ $\mathbb{P}(\text{At most one heads}) = \mathbb{P}(X \ge 1) = p_X(1) + p_X(2) = 1/2 + 1/4 = 3/4$ $\mathbb{P}(\text{At least one heads}) = \mathbb{P}(X \ge 1) = 1 - F_X(1-) = 1 - F_X(0) = 1 - 1/4 = 3/4$ $\mathbb{P}(\text{Either no heads or two heads}) = \mathbb{P}(X = 0 \text{ or } X = 2) = p_X(0) + p_X(2) = 1/4 + 1/4 = 1/2$ $\mathbb{P}(\text{Either no heads or two heads}) = \mathbb{P}(X = 0 \text{ or } X = 2) = [F_X(0) - F_X(0-)] + [F_X(2) - F_X(2-)] = [1/4 - 0] + [1 - 3/4] = 1/2$

<u>EX 3.2.5:</u> Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs. Moreover, the coins flips are independent of one another.

Let random variable $X \equiv (\# \text{ Heads Observed})$

Compute the following probabilities using the pmf of X: (pmf of X, $p_X(k)$, was found in EX 3.2.2)

 $\mathbb{P}(\text{Exactly one heads}) = \mathbb{P}(X = 1) = p_X(1) = \left(\frac{1}{2}\right)^{1+1} = \left(\frac{1}{2}\right)^2 = 1/4$ $\mathbb{P}(\text{At most one heads}) = \mathbb{P}(X \le 1) = p_X(0) + p_X(1) = \left(\frac{1}{2}\right)^{0+1} + \left(\frac{1}{2}\right)^{1+1} = \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 = \frac{1}{2} + \frac{1}{4} = 3/4$ $\mathbb{P}(\text{At least one heads}) = \mathbb{P}(X \ge 1) = 1 - \mathbb{P}(X < 1) = 1 - \mathbb{P}(X = 0) = 1 - p_X(0) = 1 - \left(\frac{1}{2}\right)^{0+1} = 1 - \frac{1}{2} = 1/2$ $\mathbb{P}(\text{Between two heads and six heads, inclusive}) = \mathbb{P}(2 \le X \le 6) = p_X(2) + p_X(3) + p_X(4) + p_X(5) + p_X(6) = 31/128 \approx 0.2422$ $\mathbb{P}(\text{Between two heads and six heads, exclusive}) = \mathbb{P}(2 < X < 6) = p_X(3) + p_X(4) + p_X(5) = \left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^6 = 7/64 \approx 0.1094$

EX 3.2.6: Consider the following experiment: Repeatedly flip an <u>unfair</u> coin and observe its top face until a tail occurs.

 The coin is unfair because tails occurs twice as often as heads.
 Moreover, the coins flips are independent of one another.

Let random variable $X \equiv (\# \text{ Heads Observed})$

Compute the following probabilities using the pmf of X: (pmf of X, $p_X(k)$, was found in EX 3.2.3)

 $\mathbb{P}(\text{Exactly one heads}) = \mathbb{P}(X=1) = p_X(1) = \frac{2}{3} \cdot \left(\frac{1}{3}\right)^1 = \frac{2}{3} \cdot \frac{1}{3} = 2/9$

 $\mathbb{P}(\text{At most one heads}) = \mathbb{P}(X \le 1) = p_X(0) + p_X(1) = \frac{2}{3} \cdot \left(\frac{1}{3}\right)^0 + \frac{2}{3} \cdot \left(\frac{1}{3}\right)^1 = \frac{2}{3} + \frac{2}{9} = \boxed{8/9}$

 $\mathbb{P}(\text{At least one heads}) = \mathbb{P}(X \ge 1) = 1 - \mathbb{P}(X < 1) = 1 - \mathbb{P}(X = 0) = 1 - p_X(0) = 1 - \frac{2}{3} \cdot \left(\frac{1}{3}\right)^0 = 1 - \frac{2}{3} = 1/3$

 $\mathbb{P}(\text{Between two heads and six heads, inclusive}) = \mathbb{P}(2 \le X \le 6) = p_X(2) + p_X(3) + p_X(4) + p_X(5) + p_X(6) = 242/2187 \approx 0.1107$

 $\mathbb{P}(\text{Between two heads and six heads, exclusive}) = \mathbb{P}(2 < X < 6) = p_X(3) + p_X(4) + p_X(5) = \frac{2}{3} \cdot \left(\frac{1}{3}\right)^3 + \frac{2}{3} \cdot \left(\frac{1}{3}\right)^4 + \frac{2}{3} \cdot \left(\frac{1}{3}\right)^5 = \boxed{26/729}$

^{©2016} Josh Engwer – Revised February 17, 2016