```
Let random variable X (# Heads Observed)
Let random variable Z (Is at least One Tail Observed? (1= Yes, 0=No))
```

(a) List all the possible outcomes in the sample space Ω for the experiment.
$\Omega=\{H H, H T, T H, T T\}$
(b) For each outcome in the sample space Ω, determine the associated value of each random variable X, Z.
$X(H H)=2, \quad X(H T)=1, \quad X(T H)=1, \quad X(T T)=0$
$Z(H H)=0, \quad Z(H T)=1, \quad Z(T H)=1, \quad Z(T T)=1$
(c) Determine the support of each random variable X, Z for the experiment.

$$
\operatorname{Supp}(X)=\{0,1,2\} \quad \operatorname{Supp}(Z)=\{0,1\}
$$

(d) Determine the probability mass function (pmf) for each random variable X, Z.

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{X}(0)=\mathbb{P}(X=0)=\frac{|\{T T\}|}{|\Omega|}=\frac{1}{4} \\
p_{X}(1)=\mathbb{P}(X=1)=\frac{|\{H T, T H\}|}{|\Omega|}=\frac{1}{2} \Longrightarrow \text { The pmf of r.v. } X \text { is } \frac{k}{p} \begin{array}{l}
0 \\
p_{X}(k) \\
1 / 4 \\
1 / 2 \\
1 / 4
\end{array} \\
p_{X}(2)=\mathbb{P}(X=2)=\frac{|\{H H\}|}{|\Omega|}=\frac{1}{4}
\end{array}\right. \\
& \left\{\begin{array}{l}
p_{Z}(0)=\mathbb{P}(Z=0)=\frac{|\{H H\}|}{|\Omega|}=\frac{1}{4} \\
p_{Z}(1)=\mathbb{P}(Z=1)=\frac{|\{H T, T H, T T\}|}{|\Omega|}=\frac{3}{4}
\end{array} \Longrightarrow \text { The pmf of r.v. } Z \text { is } \frac{k}{0} \begin{array}{l}
1 \\
\hline p_{Z}(k) \mid 1 / 4 \\
3 / 4 \\
\hline
\end{array}\right.
\end{aligned}
$$

(e) Determine the cumulative distribution function (cdf) for each random variable X, Z.

$$
\begin{aligned}
& p_{X}(k)=\left\{\begin{array}{cl}
1 / 4 & , \text { if } k=0 \\
1 / 2 & \text {, if } k=1 \\
1 / 4 & \text {, if } k=2
\end{array} \Longrightarrow F_{X}(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
\frac{1}{4} & , \text { if } 0 \leq x<1 \\
\frac{1}{4}+\frac{1}{2} & , \text { if } 1 \leq x<2 \\
\frac{1}{4}+\frac{1}{2}+\frac{1}{4} & , \text { if } 2 \leq x
\end{array} \Longrightarrow \operatorname{cdf} \text { of } X \text { is } F_{X}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 4 & , \text { if } 0 \leq x<1 \\
3 / 4 & , \text { if } 1 \leq x<2 \\
1 & , \text { if } 2 \leq x
\end{array}\right.\right.\right. \\
& p_{Z}(k)=\left\{\begin{array}{cl}
1 / 4 & , \text { if } k=0 \\
3 / 4 & \text {, if } k=1
\end{array} \Longrightarrow F_{Z}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
\frac{1}{4} & , \text { if } 0 \leq x<1 \\
\frac{1}{4}+\frac{3}{4} & , \text { if } 1 \leq x
\end{array} \Longrightarrow \operatorname{cdf} \text { of } Z \text { is } F_{Z}(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
1 / 4 & \text { if } 0 \leq x<1 \\
1 & \text { if } 1 \leq x
\end{array}\right.\right.\right.
\end{aligned}
$$

(f) Sketch the cdf for each random variable.

Moreover, the coins flips are independent of one another.

```
Let random variable X (# Heads Observed)
Let random variable Z (Is at least One Tail Observed? (1 = Yes, 0 = No))
```

(a) List four possible outcomes in the sample space Ω for the experiment.
$\Omega=\{T, H T, H H T, H H H T, \cdots\}$
(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.

$$
\begin{array}{llll}
X(T)=0, & X(H T)=1, & X(H H T)=2, & X(H H H T)=3,
\end{array} \quad \cdots,
$$

(c) Determine the support of each random variable X, Z for the experiment.
$\operatorname{Supp}(X)=\{0,1,2,3, \cdots\} \quad \operatorname{Supp}(Z)=\{1\}$
(d) Determine the probability mass function (pmf) for each random variable X, Z.

Since the coin is fair, $\mathbb{P}($ Heads $)=\mathbb{P}(H)=1 / 2 \quad$ and $\quad \mathbb{P}($ Tails $)=\mathbb{P}(T)=1 / 2$

$p_{X}(0)$	$=$	$\mathbb{P}(X=0)$	$=$	$\mathbb{P}(T)$	$=$							$1 / 2$
$p_{X}(1)$	$=$	$\mathbb{P}(X=1)$	$=$	$\mathbb{P}(H T)$	$=$	$\mathbb{P}(H \cap T)$	$I N D$	$\mathbb{P}(H) \cdot \mathbb{P}(T)$	$=$	$\frac{1}{2} \cdot \frac{1}{2}$	$=$	1/4
$p_{X}(2)$	$=$	$\mathbb{P}(X=2)$	$=$	$\mathbb{P}(H H T)$	$=$	$\mathbb{P}(H \cap H \cap T)$	$\underline{I N D}$	$\mathbb{P}(H) \cdot \mathbb{P}(H) \cdot \mathbb{P}(T)$	$=$	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$	=	1/8
$p_{X}(3)$	$=$	$\mathbb{P}(X=3)$	$=$	$\mathbb{P}(H H H T)$	$=$	$\mathbb{P}(H \cap H \cap H \cap T)$	$\stackrel{I N D}{=}$	$\mathbb{P}(H) \cdot \mathbb{P}(H) \cdot \mathbb{P}(H) \cdot \mathbb{P}(T)$	$=$	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$.	$=$	1/16

The pmf of r.v. X is	k	0	1	2	3	\cdots
$p_{X}(k)$	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	\cdots	

Since $\operatorname{Supp}(Z)$ contains exactly one value, its probability has to be one:

$$
\begin{aligned}
& p_{Z}(0)=\mathbb{P}(Z=0)=0 \\
& p_{Z}(1)=\mathbb{P}(Z=1)=1
\end{aligned}
$$

$\therefore \quad$ The pmf of r.v. Z is | k | 0 | 1 |
| :---: | :---: | :---: |
| $p_{Z}(k)$ | 0 | 1 |

(e) Write the pmf of random variable X in closed-form by means of pattern recognition.

It's easier to recognize a pattern in the intermediate expression for each probability instead of its final value:

$$
\begin{array}{llll}
p_{X}(0) & = & \frac{1}{2} & =\left(\frac{1}{2}\right)^{1} \\
p_{X}(1) & = & \frac{1}{2} \cdot \frac{1}{2} & =\left(\frac{1}{2}\right)^{2} \\
p_{X}(2) & = & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & =\left(\frac{1}{2}\right)^{3} \\
p_{X}(3) & = & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & =\left(\frac{1}{2}\right)^{4}
\end{array}
$$

\therefore The closed-form formula for the pmf of r.v. X is $p_{X}(k)=\left(\frac{1}{2}\right)^{k+1}$ or $p_{X}(k)=0.5^{k+1}$
SANITY CHECK: $\sum_{k=0}^{\infty} p_{X}(k)=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k+1}=\sum_{k=0}^{\infty} \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{k}=\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} \stackrel{(*)}{=} \frac{1}{2} \cdot\left(\frac{1}{1-\frac{1}{2}}\right)=\frac{1}{2} \cdot 2=1 \quad \checkmark$
(*) Recall from Calculus II the sum of a convergent geometric series: If $a \neq 0$ and $|r|<1$, then $\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}$

EX 3.2.3: Consider the following experiment: Repeatedly flip an unfair coin and observe its top face until a tail occurs.
The coin is unfair because tails occurs twice as often as heads.
Moreover, the coins flips are independent of one another.

```
Let random variable X (# Heads Observed)
Let random variable Z (Is at least One Tail Observed? (1 = Yes, 0 = No))
```

(a) List four possible outcomes in the sample space Ω for the experiment.
$\Omega=\{T, H T, H H T, H H H T, \cdots\}$
(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.
$X(T)=0, \quad X(H T)=1, \quad X(H H T)=2, \quad X(H H H T)=3, \quad \cdots$
$Z(T)=1, \quad Z(H T)=1, \quad Z(H H T)=1, \quad Z(H H H T)=1, \quad \cdots$
(c) Determine the support of each random variable X, Z for the experiment.
$\operatorname{Supp}(X)=\{0,1,2,3, \cdots\} \quad \operatorname{Supp}(Z)=\{1\}$
(d) Determine the probability mass function (pmf) for each random variable X, Z.

Since the coin is unfair and tails occurs twice as often as heads:
$\left\{\begin{array}{l}\mathbb{P}(T)=2 \cdot \mathbb{P}(H) \\ \mathbb{P}(H)+\mathbb{P}(T)=1\end{array} \Longrightarrow \mathbb{P}(H)+2 \cdot \mathbb{P}(H)=1 \Longrightarrow 3 \cdot \mathbb{P}(H)=1 \Longrightarrow \mathbb{P}(H)=1 / 3 \Longrightarrow \mathbb{P}(T)=2 \cdot \mathbb{P}(H)=2 \cdot \frac{1}{3}=2 / 3\right.$

\therefore

The pmf of r.v. X is	k	0	1	2	3	\cdots
	$2 / 3$	$2 / 9$	$2 / 27$	$2 / 81$	\cdots	

Since $\operatorname{Supp}(Z)$ contains exactly one value, its probability has to be one:

$$
\begin{aligned}
& p_{Z}(0)=\mathbb{P}(Z=0)=0 \\
& p_{Z}(1)=\mathbb{P}(Z=1)=1
\end{aligned} \quad \Longrightarrow \begin{array}{c|cc|}
k & 0 & 1 \\
\hline p_{Z}(k) & 0 & 1 \\
\hline
\end{array}
$$

(e) Write the pmf of random variable X in closed-form by means of pattern recognition.

It's easier to recognize a pattern in the intermediate expression for each probability instead of its final value:

$$
\begin{aligned}
& p_{X}(0)=\frac{2}{3}=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{0} \\
& p_{X}(1)=\frac{1}{3} \cdot \frac{2}{3}=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{1} \\
& p_{X}(2)=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{2} \\
& p_{X}(3)=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{3}
\end{aligned}
$$

\therefore The closed-form formula for the pmf of r.v. X is $p_{X}(k)=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{k}$
SANITY CHECK: $\sum_{k=0}^{\infty} p_{X}(k)=\sum_{k=0}^{\infty} \frac{2}{3} \cdot\left(\frac{1}{3}\right)^{k}=\frac{2}{3} \sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{k} \stackrel{(*)}{=} \frac{2}{3} \cdot\left(\frac{1}{1-\frac{1}{3}}\right)=\frac{2}{3} \cdot \frac{3}{2}=1 \quad \checkmark$
$(*)$ Recall from Calculus II the sum of a convergent geometric series: If $a \neq 0$ and $|r|<1$, then $\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}$

Compute the following probabilities in two ways, one way using the pmf of X and the second way using the cdf of X :
$\mathbb{P}($ Exactly one heads $)=\mathbb{P}(X=1)=p_{X}(1)=1 / 2$
$\mathbb{P}($ Exactly one heads $)=\mathbb{P}(X=1)=F_{X}(1)-F_{X}(1-)=F_{X}(1)-F_{X}(0)=3 / 4-1 / 4=1 / 2$
$\mathbb{P}($ At most one heads $)=\mathbb{P}(X \leq 1)=p_{X}(0)+p_{X}(1)=1 / 4+1 / 2=3 / 4$
$\mathbb{P}($ At most one heads $)=\mathbb{P}(X \leq 1)=F_{X}(1)=3 / 4$
$\mathbb{P}($ At least one heads $)=\mathbb{P}(X \geq 1)=p_{X}(1)+p_{X}(2)=1 / 2+1 / 4=3 / 4$
$\mathbb{P}($ At least one heads $)=\mathbb{P}(X \geq 1)=1-F_{X}(1-)=1-F_{X}(0)=1-1 / 4=3 / 4$
$\mathbb{P}($ Either no heads or two heads $)=\mathbb{P}(X=0$ or $X=2)=p_{X}(0)+p_{X}(2)=1 / 4+1 / 4=1 / 2$
$\mathbb{P}($ Either no heads or two heads $)=\mathbb{P}(X=0$ or $X=2)=\left[F_{X}(0)-F_{X}(0-)\right]+\left[F_{X}(2)-F_{X}(2-)\right]=[1 / 4-0]+[1-3 / 4]=1 / 2$
EX 3.2.5: Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs. Moreover, the coins flips are independent of one another.

$$
\text { Let random variable } X \equiv \text { (\# Heads Observed) }
$$

Compute the following probabilities using the pmf of X : (pmf of $X, p_{X}(k)$, was found in EX 3.2.2)
$\mathbb{P}($ Exactly one heads $)=\mathbb{P}(X=1)=p_{X}(1)=\left(\frac{1}{2}\right)^{1+1}=\left(\frac{1}{2}\right)^{2}=1 / 4$
$\mathbb{P}($ At most one heads $)=\mathbb{P}(X \leq 1)=p_{X}(0)+p_{X}(1)=\left(\frac{1}{2}\right)^{0+1}+\left(\frac{1}{2}\right)^{1+1}=\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}=3 / 4$
$\mathbb{P}($ At least one heads $)=\mathbb{P}(X \geq 1)=1-\mathbb{P}(X<1)=1-\mathbb{P}(X=0)=1-p_{X}(0)=1-\left(\frac{1}{2}\right)^{0+1}=1-\frac{1}{2}=1 / 2$
$\mathbb{P}($ Between two heads and six heads, inclusive $)=\mathbb{P}(2 \leq X \leq 6)=p_{X}(2)+p_{X}(3)+p_{X}(4)+p_{X}(5)+p_{X}(6)=31 / 128 \approx 0.2422$
$\mathbb{P}($ Between two heads and six heads, exclusive $)=\mathbb{P}(2<X<6)=p_{X}(3)+p_{X}(4)+p_{X}(5)=\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{6}=7 / 64 \approx 0.1094$
EX 3.2.6: Consider the following experiment: Repeatedly flip an unfair coin and observe its top face until a tail occurs.
The coin is unfair because tails occurs twice as often as heads.
Moreover, the coins flips are independent of one another.

$$
\text { Let random variable } X \equiv \text { (\# Heads Observed) }
$$

Compute the following probabilities using the pmf of X : (pmf of $X, p_{X}(k)$, was found in EX 3.2.3)
$\mathbb{P}($ Exactly one heads $)=\mathbb{P}(X=1)=p_{X}(1)=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{1}=\frac{2}{3} \cdot \frac{1}{3}=2 / 9$
$\mathbb{P}($ At most one heads $)=\mathbb{P}(X \leq 1)=p_{X}(0)+p_{X}(1)=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{0}+\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{1}=\frac{2}{3}+\frac{2}{9}=8 / 9$
$\mathbb{P}($ At least one heads $)=\mathbb{P}(X \geq 1)=1-\mathbb{P}(X<1)=1-\mathbb{P}(X=0)=1-p_{X}(0)=1-\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{0}=1-\frac{2}{3}=1 / 3$
$\mathbb{P}($ Between two heads and six heads, inclusive $)=\mathbb{P}(2 \leq X \leq 6)=p_{X}(2)+p_{X}(3)+p_{X}(4)+p_{X}(5)+p_{X}(6)=242 / 2187 \approx 0.1107$
$\mathbb{P}($ Between two heads and six heads, exclusive $)=\mathbb{P}(2<X<6)=p_{X}(3)+p_{X}(4)+p_{X}(5)=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{3}+\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{4}+\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{5}=26 / 729$

