DISCRETE RANDOM VARIABLES: PMF's \& CDF's

- PROBABILITY MASS FUNCTION (PMF) DEFINITION): Let X be a discrete random variable.

Then, its pmf, denoted as $p_{X}(k)$, is defined as follows: $\quad p_{X}(k):=\mathbb{P}(X=k) \quad \forall k \in \operatorname{Supp}(X)$

- PROBABILITY MASS FUNCTION (PMF) AXIOMS): The pmf $p_{X}(k)$ of a discrete r.v. X satisfies:

$$
\text { Non-negativity on its Support: } \quad p_{X}(k) \geq 0 \quad \forall k \in \operatorname{Supp}(X)
$$

Universal Sum of Unity: $\quad \sum_{k \in \operatorname{Supp}(X)} p_{X}(k)=1$

- CUMULATIVE DENSITY FCN (CDF) DEFN: Let X be a discrete random variable s.t. $\operatorname{Supp}(X)=\left\{k_{1}, k_{2}, k_{3}, \cdots\right\}$

Then, its cdf, denoted as $F_{X}(x)$, is defined as follows:

$$
F_{X}(x):=\mathbb{P}(X \leq x)=\sum_{k_{i} \leq x} p_{X}\left(k_{i}\right) \quad \forall x \in \mathbb{R}
$$

- CUMULATIVE DENSITY FCN (CDF) AXIOMS: The cdf $F_{X}(x)$ of a discrete r.v. X satisfies:

$$
\begin{array}{lc}
\text { Eventually Zero (One) to the Left (Right): } & \lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow+\infty} F_{X}(x)=1 \\
\text { Non-decreasing: } & x_{1} \leq x_{2} \Longrightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right) \\
\text { Right-continuous: } & \lim _{x \downarrow x_{0}} F_{X}(x)=F_{X}\left(x_{0}\right) \quad \forall x_{0} \in \mathbb{R}
\end{array}
$$

Piecewise Constant: (AKA step function)

- COMPUTING PROBABILITIES USING A DISCRETE PMF: Let X be a discrete r.v. with cdf $F_{X}(x)$.

Let scalars $a, b \in \mathbb{R}$ s.t. $a<b$. Then:

$$
\begin{aligned}
\mathbb{P}(X \leq a) & =F_{X}(a) \\
\mathbb{P}(X<a) & =F_{X}(a-) \\
\mathbb{P}(a \leq X \leq b) & =F_{X}(b)-F_{X}(a-) \\
\mathbb{P}(a<X<b) & =F_{X}(b-)-F_{X}(a) \\
\mathbb{P}(a<X \leq b) & =F_{X}(b)-F_{X}(a) \\
\mathbb{P}(a \leq X<b) & =F_{X}(b-)-F_{X}(a-) \\
& \\
\mathbb{P}(X \geq b) & =1-F_{X}(b-) \\
\mathbb{P}(X>b) & =1-F_{X}(b) \\
\mathbb{P}(X=a) & =F_{X}(a)-F_{X}(a-)
\end{aligned}
$$

where:

$$
" a-" \text { represents the largest } k \in \operatorname{Supp}(X) \text { such that } k<a
$$

$" b-"$ represents the largest $k \in \operatorname{Supp}(X)$ such that $k<b$

$$
\begin{array}{c||c|c}
k & 0 & 1 \\
\hline p_{W}(k) & 1 / 2 & 1 / 2
\end{array}
$$

$$
\begin{array}{c||c|c}
k & 0 & 1 \\
\hline p_{X}(k) & 1 / 8 & 7 / 8
\end{array}
$$

k	0	1	2	3
$p_{Y}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$


```
Let random variable \(X \equiv\) (\# Heads Observed)
Let random variable \(Z \equiv\) (Is at least One Tail Observed? \((1=\) Yes, \(0=\) No \()\) )
```

(a) List all the possible outcomes in the sample space Ω for the experiment.
(b) For each outcome in the sample space Ω, determine the associated value of each random variable X, Z.
(c) Determine the support of each random variable X, Z for the experiment.
(d) Determine the probability mass function (pmf) for each random variable X, Z.
(e) Determine the cumulative distribution function (cdf) for each random variable X, Z.
(f) Sketch the cdf for each random variable.

Moreover, the coins flips are independent of one another.

$$
\begin{aligned}
& \text { Let random variable } X \equiv \text { (\# Heads Observed) } \\
& \text { Let random variable } Z \equiv \text { (Is at least One Tail Observed? } \quad(1=\text { Yes, } 0=\text { No }) \text {) }
\end{aligned}
$$

(a) List four possible outcomes in the sample space Ω for the experiment.
(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.
(c) Determine the support of each random variable X, Z for the experiment.
(d) Determine the probability mass function (pmf) for each random variable X, Z.
(e) Write the pmf of random variable X in closed-form by means of pattern recognition.

The coin is unfair because tails occurs twice as often as heads.
Moreover, the coins flips are independent of one another.

```
Let random variable X (# Heads Observed)
Let random variable Z (Is at least One Tail Observed? (1 = Yes, 0 = No))
```

(a) List four possible outcomes in the sample space Ω for the experiment.
(b) For the four outcomes in the sample space Ω listed in part (a), determine the associated value of each rv X, Z.
(c) Determine the support of each random variable X, Z for the experiment.
(d) Determine the probability mass function (pmf) for each random variable X, Z.
(e) Write the pmf of random variable X in closed-form by means of pattern recognition.

Compute the following probabilities in two ways, one way using the pmf of X and the second way using the cdf of X :
$\mathbb{P}($ Exactly one heads $)=$
$\mathbb{P}($ Exactly one heads $)=$
$\mathbb{P}($ At most one heads $)=$
$\mathbb{P}($ At most one heads $)=$
$\mathbb{P}($ At least one heads $)=$
$\mathbb{P}($ At least one heads $)=$
$\mathbb{P}($ Either no heads or two heads $)=$
$\mathbb{P}($ Either no heads or two heads $)=$
EX 3.2.5: Consider the following experiment: Repeatedly flip a fair coin and observe its top face until a tail occurs. Moreover, the coins flips are independent of one another.

Let random variable $X \equiv$ (\# Heads Observed)
Compute the following probabilities using the pmf of X :
$\mathbb{P}($ Exactly one heads $)=$
$\mathbb{P}($ At most one heads $)=$
$\mathbb{P}($ At least one heads $)=$
$\mathbb{P}($ Between two heads and six heads, inclusive $)=$
$\mathbb{P}($ Between two heads and six heads, exclusive $)=$
EX 3.2.6: Consider the following experiment: Repeatedly flip an unfair coin and observe its top face until a tail occurs.
The coin is unfair because tails occurs twice as often as heads.
Moreover, the coins flips are independent of one another.

$$
\text { Let random variable } X \equiv \text { (\# Heads Observed) }
$$

Compute the following probabilities using the pmf of X :
$\mathbb{P}($ Exactly one heads $)=$
$\mathbb{P}($ At most one heads $)=$
$\mathbb{P}($ At least one heads $)=$
$\mathbb{P}($ Between two heads and six heads, inclusive $)=$
$\mathbb{P}($ Between two heads and six heads, exclusive $)=$

