Let random variable $\quad X \equiv(\#$ Heads Observed)
Let random variable $Z \equiv$ (Is at least One Tail Observed? $\quad(1=$ Yes, $0=$ No $)$)

Recall from the 3.2 Outline the pmf's of X and $Z: \quad$| k | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $p_{X}(k)$ | $1 / 4$ | $1 / 2$ | $1 / 4$ |

k	0	1
$p_{Z}(k)$	$1 / 4$	$3 / 4$

(a) Compute the expected values of X and Z. Interpret the results.

$$
\begin{aligned}
& \mu_{X}=\mathbb{E}[X]=\sum_{k \in \operatorname{Supp}(X)} k \cdot p_{X}(k)=0 \cdot p_{X}(0)+1 \cdot p_{X}(1)+2 \cdot p_{X}(2)=(0)\left(\frac{1}{4}\right)+(1)\left(\frac{1}{2}\right)+(2)\left(\frac{1}{4}\right) \\
& \mu_{Z}=\mathbb{E}[Z]=\sum_{k \in \operatorname{Supp}(Z)} k \cdot p_{Z}(k)=0 \cdot p_{Z}(0)+1 \cdot p_{Z}(1)=(0)\left(\frac{1}{4}\right)+(1)\left(\frac{3}{4}\right)=3 / 4
\end{aligned}
$$

$\mathbb{E}[X]=1$ means if this experiment is performed many many times, on average expect one heads.
$\mathbb{E}[Z]=3 / 4$ means if this experiment is performed many many times, on average expect at least one tails.
(since $3 / 4$ is closer to 1 than 0 , and $Z=1$ means at least one tails is observed.)
(b) Compute the variances of X and Z.
$\mathbb{E}\left[X^{2}\right]=\sum_{k \in \operatorname{Supp}(X)} k^{2} \cdot p_{X}(k)=0^{2} \cdot p_{X}(0)+1^{2} \cdot p_{X}(1)+2^{2} \cdot p_{X}(2)=\left(0^{2}\right)\left(\frac{1}{4}\right)+\left(1^{2}\right)\left(\frac{1}{2}\right)+\left(2^{2}\right)\left(\frac{1}{4}\right)=3 / 2$
$\therefore \mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=3 / 2-(1)^{2}=1 / 2$
$\mathbb{E}\left[Z^{2}\right]=\sum_{k \in \operatorname{Supp}(Z)} k^{2} \cdot p_{Z}(k)=0^{2} \cdot p_{Z}(0)+1^{2} \cdot p_{Z}(1)=\left(0^{2}\right)\left(\frac{1}{4}\right)+\left(1^{2}\right)\left(\frac{3}{4}\right)=3 / 4$
$\therefore \mathbb{V}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}=3 / 4-(3 / 4)^{2}=3 / 16$
Observe that $\mathbb{V}[X]>\mathbb{V}[Z]$ since the histogram of X has a larger spread than the histogram of Z.
(c) Compute the standard deviations of X and Z.
$\sigma_{X}=\sqrt{\mathbb{V}[X]}=\sqrt{1 / 2}=\sqrt{1 / \sqrt{2}} \approx 0.7071 \quad \sigma_{Z}=\sqrt{\mathbb{V}[Z]}=\sqrt{3 / 16}=\sqrt{3} / 4 \approx 0.4330$
EX 3.3.2: A music store purchased four guitars at $\$ 150$ each from a wholesaler. The store will sell each guitar for $\$ 350$.
The wholesaler refuses to buy back any unsold guitars no matter how long they sat in the store.

Let r.v. $Y \equiv$ (\# guitars sold) such that Y has the pmf:	k	0	1	2	3	4
$p_{Y}(k)$	0.20	0.10	0.30	0.15	0.25	

What is the expected profit for the music store? [HINT: (Profit) := (Revenue) - (Cost)]
First, compute $\mathbb{E}[Y]=\sum_{k \in \operatorname{Supp}(Y)} k \cdot p_{Y}(k)=(0)(0.20)+(1)(0.10)+(2)(0.30)+(3)(0.15)+(4)(0.25)=2.15$
$\therefore \quad($ Expected Profit $)=\mathbb{E}[350 Y-(4)(150)]=\mathbb{E}[350 Y-600] \stackrel{(*)}{=} 350 \cdot \mathbb{E}[Y]-600=(350)(2.15)-600=\$ 152.50$
EX 3.3.3: A music store purchased four guitars at $\$ 150$ each from a wholesaler. The store will sell each guitar for $\$ 350$.
The wholesaler agrees to buy back any unsold guitars after six months for $\$ 50$ apiece.

Let r.v. $W \equiv$ (\# guitars sold) such that W has the pmf:	k	0	1	2	3	4
$p_{W}(k)$	0.20	0.10	0.30	0.15	0.25	

What is the expected profit for the music store? [HINT: (Profit) := (Revenue) - (Cost)]
First, compute $\mathbb{E}[W]=\sum_{k \in \operatorname{Supp}(W)} k \cdot p_{W}(k)=(0)(0.20)+(1)(0.10)+(2)(0.30)+(3)(0.15)+(4)(0.25)=2.15$
$\therefore \quad($ Expected Profit $)=\mathbb{E}[350 W+50(4-W)-(4)(150)]=\mathbb{E}[350 W-400] \stackrel{(*)}{=} 350 \cdot \mathbb{E}[W]-400=(350)(2.15)-400=\$ 245.00$
$(*)$ Linearity of Expected Value: $\mathbb{E}[a \cdot X+b]=a \cdot \mathbb{E}[X]+b$

