- EXPECTED VALUE (MEAN) OF A DISCRETE R.V.: Let X be a discrete random variable with pmf $p_{X}(k)$.

Then the expected value (AKA mean) of X is:

$$
\mathbb{E}[X]:=\sum_{k \in \operatorname{Supp}(X)} k \cdot p_{X}(k)
$$

It's possible (but rare) that the expected value is infinite: $\quad \mathbb{E}[X]=\infty$
NOTATION: The expected value of X is alternatively denoted by μ_{X}.

- EXPECTED VALUE OF A FUNCTION OF DISCRETE R.V.: Let X be a discrete r.v. with pmf $p_{X}(k)$.

Let $h(x)$ be a single-variable function. Then the expected value (AKA mean) of $h(X)$ is:

$$
\mathbb{E}[h(X)]:=\sum_{k \in \operatorname{Supp}(X)} h(k) \cdot p_{X}(k)
$$

It's possible (but rare) that the expected value is infinite: $\quad \mathbb{E}[h(X)]= \pm \infty$
NOTATION: The expected value of $h(X)$ is alternatively denoted by $\mu_{h(X)}$.

- VARIANCE \& STD DEV OF A DISCRETE R.V.: Let X be a discrete r.v. with $\operatorname{pmf} p_{X}(k)$ and mean μ_{X}.

Then the variance of X is: $\quad \mathbb{V}[X]:=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\sum_{k \in \operatorname{Supp}(X)}\left(k-\mu_{X}\right)^{2} \cdot p_{X}(k)$
Moreover, the standard deviation of X is: $\quad \sigma_{X}:=\sqrt{\mathbb{V}[X]}$
NOTATION: The variance of X is alternatively denoted by σ_{X}^{2} or $\operatorname{Var}(X)$.

- EASIER FORMULA FOR VARIANCE: $\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$
- LINEARITY OF DISCRETE EXPECTED VALUE (PART I): $\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b$
- LINEARITY OF DISCRETE EXPECTED VALUE (PART II): $\mathbb{E}[a \cdot g(X)+b]=a \cdot \mathbb{E}[g(X)]+b$
- SEMI-LINEARITY OF DISCRETE VARIANCE (PART I): $\mathbb{V}[a X+b]=a^{2} \cdot \mathbb{V}[X]$
- SEMI-LINEARITY OF DISCRETE VARIANCE (PART II): $\mathbb{V}[a \cdot g(X)+b]=a^{2} \cdot \mathbb{V}[g(X)]$
- SEMI-LINEARITY OF DISCRETE STANDARD DEVIATION (PART I): $\quad \sigma_{a X+b}=|a| \cdot \sigma_{X}$
- SEMI-LINEARITY OF DISCRETE STANDARD DEVIATION (PART II): $\quad \sigma_{a \cdot g(X)+b}=|a| \cdot \sigma_{g(X)}$

```
Let random variable X (# Heads Observed)
Let random variable Z (Is at least One Tail Observed? (1 = Yes, 0 = No))
```

Recall from the 3.2 Outline the pmf's of X and $Z:$\begin{tabular}{c|ccc}
k \& 0 \& 1 \& 2 \\
\hline$p_{X}(k)$ \& $1 / 4$ \& $1 / 2$ \& $1 / 4$

\quad

k \& 0 \& 1 \\
\hline$p_{Z}(k)$ \& $1 / 4$ \& $3 / 4$
\end{tabular}

(a) Compute the expected values of X and Z. Interpret the results.
(b) Compute the variances of X and Z.
(c) Compute the standard deviations of X and Z.

EX 3.3.2: A music store purchased four guitars at $\$ 150$ each from a wholesaler. The store will sell each guitar for $\$ 350$.
The wholesaler refuses to buy back any unsold guitars no matter how long they sat in the store.

Let r.v. $Y \equiv$ (\# guitars sold) such that Y has the pmf:	k	0	1	2	3	4
$p_{Y}(k)$	0.20	0.10	0.30	0.15	0.25	

What is the expected profit for the music store? [HINT: (Profit) := (Revenue) - (Cost)]

EX 3.3.3: A music store purchased four guitars at $\$ 150$ each from a wholesaler. The store will sell each guitar for $\$ 350$.
The wholesaler agrees to buy back any unsold guitars after six months for $\$ 50$ apiece.

Let r.v. $W \equiv$ (\# guitars sold) such that W has the pmf:	k	0	1	2	3	4
$p_{W}(k)$	0.20	0.10	0.30	0.15	0.25	

What is the expected profit for the music store? [HINT: (Profit) := (Revenue) - (Cost)]

