DISCRETE R.V.'S: EXPECTED VALUE, VARIANCE, STD DEV [DEVORE 3.3]

• EXPECTED VALUE (MEAN) OF A DISCRETE R.V.: Let X be a discrete random variable with pmf $p_X(k)$.

Then the **expected value** (AKA mean) of X is: $\mathbb{E}[X] := \sum_{k \in \text{Supp}(X)} k \cdot p_X(k)$

It's possible (but rare) that the expected value is **infinite**: $\mathbb{E}[X] = \infty$ NOTATION: The expected value of X is alternatively denoted by μ_X .

• **EXPECTED VALUE OF A FUNCTION OF DISCRETE R.V.:** Let X be a **discrete** r.v. with pmf $p_X(k)$.

Let h(x) be a single-variable function. Then the **expected value** (AKA **mean**) of h(X) is:

$$\mathbb{E}[h(X)] := \sum_{k \in \text{Supp}(X)} h(k) \cdot p_X(k)$$

It's possible (but rare) that the expected value is **infinite**: $\mathbb{E}[h(X)] = \pm \infty$ <u>NOTATION</u>: The expected value of h(X) is alternatively denoted by $\mu_{h(X)}$.

• VARIANCE & STD DEV OF A DISCRETE R.V.: Let X be a discrete r.v. with pmf $p_X(k)$ and mean μ_X . Then the variance of X is: $\mathbb{V}[X] := \mathbb{E}[(X - \mu_X)^2] = \sum_{k \in \text{Supp}(X)} (k - \mu_X)^2 \cdot p_X(k)$ Moreover, the standard deviation of X is: $\sigma_X := \sqrt{\mathbb{V}[X]}$ <u>NOTATION</u>: The variance of X is alternatively denoted by σ_X^2 or Var(X).

• **EASIER FORMULA FOR VARIANCE:** $\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

- LINEARITY OF DISCRETE EXPECTED VALUE (PART I): $\mathbb{E}[aX + b] = a \cdot \mathbb{E}[X] + b$
- LINEARITY OF DISCRETE EXPECTED VALUE (PART II): $\mathbb{E}[a \cdot g(X) + b] = a \cdot \mathbb{E}[g(X)] + b$
- SEMI-LINEARITY OF DISCRETE VARIANCE (PART I): $\mathbb{V}[aX + b] = a^2 \cdot \mathbb{V}[X]$
- SEMI-LINEARITY OF DISCRETE VARIANCE (PART II): $\mathbb{V}[a \cdot g(X) + b] = a^2 \cdot \mathbb{V}[g(X)]$
- SEMI-LINEARITY OF DISCRETE STANDARD DEVIATION (PART I): $\sigma_{aX+b} = |a| \cdot \sigma_X$
- SEMI-LINEARITY OF DISCRETE STANDARD DEVIATION (PART II): $\sigma_{a \cdot g(X)+b} = |a| \cdot \sigma_{g(X)}$

C2016 Josh Engwer – Revised February 19, 2016

<u>EX 3.3.1:</u> Consider the following experiment: Flip two fair coins and observe their top faces.

Let random variable $X \equiv (\#$ Heads Observed) Let random variable $Z \equiv ($ Is at least One Tail Observed? (1 =Yes, 0 =No))

Recall from the 3.2 Outline the pmf's of X and Z: $\frac{k}{p_X(k)} \frac{0}{1/4} \frac{1}{2} \frac{1}{1/4} \frac{k}{p_Z(k)} \frac{0}{1/4} \frac{1}{3/4}$ (a) Compute the expected values of X and Z. Interpret the results.

- (b) Compute the variances of X and Z.
- (c) Compute the standard deviations of X and Z.

EX 3.3.2:A music store purchased four guitars at \$150 each from a wholesaler. The store will sell each guitar for \$350.**The wholesaler refuses to buy back any unsold guitars no matter how long they sat in the store.**Let r.v. $Y \equiv (\# \text{ guitars sold})$ such that Y has the pmf:k01234}{p_Y(k)}What is the expected **profit** for the music store?[HINT: (Profit) := (Revenue) - (Cost)]

<u>EX 3.3.3</u> A music store purchased four guitars at \$150 each from a wholesaler. The store will sell each guitar for \$350. **The wholesaler agrees to buy back any unsold guitars after six months for \$50 apiece.** Let r.v. $W \equiv (\# \text{ guitars sold})$ such that W has the pmf: $\frac{k}{2} = 0$

	P	$p_W(k)$	0.20	0.10	0.30	0.15	0.25
What is the expected profit for the music store?	[HINT	: (Profi	t) := (1)	Revenu	ue) – (0	Cost)]	