(a) What is the probability that exactly five flights are late in a day?

Let $X \equiv$ (\# late flights in a day). Then, "Success" $\equiv " F l i g h t$ is late" and $p \equiv \mathbb{P}($ Success $)=3 / 10=0.3$
Therefore, $X \sim \operatorname{Binomial}(n=20, p=0.3)$
METHOD 1: Compute probability using the pmf

$$
\mathbb{P}(X=5)=p_{X}(5 ; 20,0.3)=\binom{20}{5} 0.3^{5}(1-0.3)^{20-5}=\binom{20}{5} 0.3^{5} 0.7^{15} \approx 0.17886
$$

METHOD 2: Compute probability using the appropriate cdf table

$$
\mathbb{P}(X=5)=\mathbb{P}(X \leq 5)-\mathbb{P}(X \leq 4)=\operatorname{Bi}(5 ; 20,0.3)-\operatorname{Bi}(4 ; 20,0.3) \stackrel{\text { LOOKUP }}{\approx} 0.41637-0.23751=0.17886
$$

(b) What is the probability that at most five flights are late in a day?

It is far less work to lookup the appropriate cdf table than using the pmf:

$$
\mathbb{P}(X \leq 5)=\operatorname{Bi}(5 ; 20,0.3) \stackrel{\text { LOOKUP }}{\approx} 0.41637
$$

(c) What is the probability that at least five flights are late in a day?

It is far less work to lookup the appropriate cdf table than using the pmf:

$$
\mathbb{P}(X \geq 5)=1-\mathbb{P}(X<5)=1-\mathbb{P}(X \leq 4)=1-\operatorname{Bi}(4 ; 20,0.3) \stackrel{\text { LOOKUP }}{\approx} 1-0.23751=0.76249
$$

(d) What is the expected number of late flights in a day?
$\mathbb{E}[X]=n p=(20)(0.3)=6$
(e) What is the variance of the number of late flights in a day?
$\mathbb{V}[X]=n p(1-p)=(20)(0.3)(1-0.3)=(20)(0.3)(0.7)=4.2$
(f) If Lubbock airport earns $\$ 1000$ for each early or on-time flight arrival and loses $\$ 200$ for each late arrival, what is the expected profit for Lubbock airport in a day?

$$
\text { Let } \begin{aligned}
h(X) \equiv(\text { Profit }) & =\$ 1000 \times(\# \text { Non-late flights each day })-\$ 200 \times(\# \text { late flights each day }) \\
& =1000(20-X)-200 X \\
& =20000-1200 X
\end{aligned}
$$

$$
\begin{aligned}
\text { Then (Expected Profit) } & =\mathbb{E}[h(X)] \\
& =\mathbb{E}[20000-1200 X] \\
& \stackrel{(*)}{=} 20000-1200 \cdot \mathbb{E}[X] \\
& =20000-(1200)(6) \\
& =\$ 12800
\end{aligned}
$$

(*) Linearity of Expected Value: $\mathbb{E}[a \cdot X+b]=a \cdot \mathbb{E}[X]+b$

