EX 3.6.1: A study of a bank's teller lines showed that from 10am to 1 pm there is an average of six customers waiting. Assume that the number of customers waiting in line is modeled by a Poisson distribution.
(a) What is the probability that upon visiting the bank one day from 10 am to 1 pm that six customers are waiting?

Let $X \equiv$ (\# Customers waiting in line from 10am to 1 pm at bank) \quad Then, $X \sim \operatorname{Poisson}(\lambda=6)$
METHOD 1: Compute probability using the pmf: $\quad \mathbb{P}(X=6)=p_{X}(6 ; 6)=\frac{e^{-6} 6^{6}}{6!} \approx 0.16062$
METHOD 2: Compute probability using the appropriate cdf table:

$$
\mathbb{P}(X=6)=\mathbb{P}(X \leq 6)-\mathbb{P}(X \leq 5)=\operatorname{Pois}(6 ; 6)-\operatorname{Pois}(5 ; 6) \stackrel{\text { LOOKUP }}{\approx} 0.60630-0.44568=0.16062
$$

(b) What is the probability that upon visiting the bank one day from 10 am to 1 pm that at least six customers are waiting?

$$
\mathbb{P}(X \geq 6)=1-\mathbb{P}(X<6)=1-\mathbb{P}(X \leq 5)=1-\operatorname{Pois}(5 ; 6) \stackrel{\text { LOOKUP }}{\approx} 1-0.44568=0.55432
$$

(c) What is the probability that upon visiting the bank one day from 10 am to 1 pm that no customers are waiting?
$\mathbb{P}(X=0)=\mathbb{P}(X \leq 0)=\operatorname{Pois}(0 ; 6) \stackrel{\text { LOOKU }}{\approx} 0.00248$
EX 3.6.2:
A study of a bank's teller lines indicated that all day two customers are expected to be waiting per hour.
Assume that the number of customers waiting in line is modeled by a Poisson distribution.
(a) What is the probability that upon visiting the bank one day from 2 pm to 7 pm that six customers are waiting?

Let $Y \equiv(\#$ Customers waiting in line from 2 pm to 7 pm at bank) \quad Then, $Y \sim \operatorname{Poisson}(\lambda=\underbrace{2}_{\alpha} \cdot \underbrace{(7-2)}_{\Delta t})=\operatorname{Poisson}(\lambda=10)$
METHOD 1: Compute probability using the pmf: $\quad \mathbb{P}(Y=6)=p_{Y}(6 ; 10)=\frac{e^{-10} 10^{6}}{6!} \approx 0.06306$
METHOD 2: Compute probability using the appropriate Poisson cdf table:

$$
\mathbb{P}(Y=6)=\mathbb{P}(Y \leq 6)-\mathbb{P}(Y \leq 5)=\operatorname{Pois}(6 ; 10)-\operatorname{Pois}(5 ; 10) \stackrel{\text { LOOKUP }}{\approx} 0.13014-0.06709=0.06305
$$

(b) What is the probability that upon visiting the bank one day from 2 pm to 7 pm that at least six customers are waiting? $\mathbb{P}(Y \geq 6)=1-\mathbb{P}(Y<6)=1-\mathbb{P}(Y \leq 5)=1-\operatorname{Pois}(5 ; 10) \stackrel{\text { LOOKUP }}{\approx} 1-0.06709=0.93291$
(c) What is the probability that upon visiting the bank one day from 2 pm to 7 pm that no customers are waiting?
$\mathbb{P}(Y=0)=\mathbb{P}(Y \leq 0)=\operatorname{Pois}(0 ; 10) \stackrel{\text { LOOKUP }}{\approx} 0.00005$
EX 3.6.3: The sales of Chevy Volt cars at a dealership follow a Poisson distribution with a mean of three cars sold per day.
(a) What is the probability that for the next four days exactly two Chevy Volts are sold in total?

Let $Z \equiv$ (\# Chevy Volts sold in four days) Then, $Z \sim \operatorname{Poisson}(\lambda=\underbrace{3}_{\alpha} \cdot \underbrace{4}_{\Delta t})=\operatorname{Poisson}(\lambda=12)$
The provided Poisson cdf tables do not include $\lambda=12$, so use pmf instead: $\quad \mathbb{P}(Z=2)=p_{Z}(2 ; 12)=\frac{e^{-12} 12^{2}}{2!} \approx 0.00044$
(b) What is the probability that for the next four days exactly two Chevy Volts are sold each day?

Let $Z_{1} \equiv\left(\#\right.$ Chevy Volts sold in $1^{\text {st }}$ day), $Z_{2} \equiv\left(\#\right.$ Chevy Volts sold in $2^{\text {nd }}$ day $), \ldots, Z_{4} \equiv\left(\#\right.$ Chevy Volts sold in $4^{\text {th }}$ day $)$ Then, $Z_{1}, Z_{2}, Z_{3}, Z_{4} \sim \operatorname{Poisson}(\lambda=\underbrace{3}_{\alpha} \cdot \underbrace{1}_{\Delta t})=\operatorname{Poisson}(\lambda=3)$
Assumption "\# Arrivals during disjoint time periods are independent" $\Longrightarrow Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are independent of one another.
$\therefore \mathbb{P}($ Two Chevy Volts sold each day for four days $)=\mathbb{P}\left(Z_{1}=2\right.$ and $Z_{2}=2$ and $Z_{3}=2$ and $\left.Z_{4}=2\right)$

$$
=\mathbb{P}\left(Z_{1}=2 \cap Z_{2}=2 \cap Z_{3}=2 \cap Z_{4}=2\right)
$$

$$
\stackrel{I N D}{=} \mathbb{P}\left(Z_{1}=2\right) \cdot \mathbb{P}\left(Z_{2}=2\right) \cdot \mathbb{P}\left(Z_{3}=2\right) \cdot \mathbb{P}\left(Z_{4}=2\right)
$$

$$
\stackrel{(*)}{=} \quad\left[\mathbb{P}\left(Z_{1}=2\right)\right]^{4}=\left[p_{Z_{1}}(2 ; 3)\right]^{4}=\left[\frac{e^{-3} 3^{2}}{2!}\right]^{4} \approx 0.00252
$$

(*) This follows since the random variables $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are all identical.

