EX 4.2.1: A local gas station has three pumps, each of which can pump up to 1000 gallons per week.
Let $X \equiv$ (Total amount of gas (in 1000's of gallons) pumped at the station in a week). Then, X has the pdf:

$$
f_{X}(x)=\left\{\begin{array}{cl}
x / 2 & , \text { if } 0 \leq x<1 \\
1-(5 / 16) x & , \text { if } 1 \leq x \leq 3 \\
0 & , \text { otherwise }
\end{array}\right.
$$

(a) What is the support of random variable X ?
$\operatorname{Supp}(X)=($ Set of all meaningful values of $X)=[0,3]$
(b) Determine the cdf of $X, F_{X}(x)$.
$F_{X}(x)=\left\{\begin{array}{cl}0 & , \text { if } x<0 \\ \int_{-\infty}^{x} f_{X}(t) d t & , \text { if } 0 \leq x<1 \\ \int_{-\infty}^{x} f_{X}(t) d t & , \text { if } 1 \leq x \leq 3 \\ 1 & , \text { if } 3<x\end{array}=\left\{\begin{array}{cl}0 & \text { if } x<0 \\ \int_{0}^{x} \frac{t}{2} d t & \text { if } 0 \leq x \leq 1 \\ \int_{0}^{1} \frac{t}{2} d t+\int_{0}^{x}\left(1-\frac{5}{16} t\right) d t & , \text { if } 1 \leq x \leq 3 \\ 1 & , \text { if } 3<x\end{array} \Longrightarrow F_{X}(x)=\left[\begin{array}{cc}0 & \text { if } x<0 \\ \frac{1}{4} x^{2} & \text { if } 0 \leq x \leq 1 \\ x-\frac{5}{32} x^{2}-\frac{19}{32} & \text {, if } 1 \leq x \leq 3 \\ 1 & \text { if } 3<x\end{array}\right.\right.\right.$
For $0 \leq x<1: \quad \int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} \frac{1}{2} t d t=\left[\frac{1}{4} t^{2}\right]_{t=0}^{t=x}{ }_{F} \underline{T} C \frac{1}{4}(x)^{2}-\frac{1}{4}(0)^{2}=\frac{1}{4} x^{2}$
For $1 \leq x \leq 3: \quad \int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{1} \frac{1}{2} t d t+\int_{1}^{x}\left(1-\frac{5}{16} t\right) d t=\left[\frac{1}{4} t^{2}\right]_{t=0}^{t=1}+\left[t-\frac{5}{32} t^{2}\right]_{t=1}^{t=x}{ }_{F} \underline{T C} x-\frac{5}{32} x^{2}-\frac{19}{32}$
(c) Using the cdf, what is the probability that the station will pump at most 500 gallons in a week?

$$
\mathbb{P}(X \leq 0.5)=F_{X}(0.5)=\frac{1}{4}(0.5)^{2}=0.0625
$$

(d) Using the cdf, what is the probability that the station will pump between 1000 and 2000 gallons in a week?

$$
\mathbb{P}(1 \leq X \leq 2)=\mathbb{P}(X \leq 2)-\mathbb{P}(X \leq 1)=F_{X}(2)-F_{X}(1)=\left[(2)-\frac{5}{32}(2)^{2}\right]-\left[(1)-\frac{5}{32}(1)^{2}\right]=\frac{17}{32}=\mathbf{0 . 5 3 1 2 5}
$$

(e) What is the expected amount of gas pumped by the station in a week?

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{\operatorname{Supp}(X)} x \cdot f_{X}(x) d x=\int_{0}^{1} x \cdot\left(\frac{x}{2}\right) d x+\int_{1}^{3} x \cdot\left(1-\frac{5}{16} x\right) d x=\int_{0}^{1} \frac{1}{2} x^{2} d x+\int_{1}^{3}\left(x-\frac{5}{16} x^{2}\right) d x \\
& =\left[\frac{1}{6} x^{3}\right]_{x=0}^{x=1}+\left[\frac{1}{2} x^{2}-\frac{5}{48} x^{3}\right]_{x=1}^{x=3} \stackrel{F T T C}{=}\left[\frac{1}{6}(1)^{3}-\frac{1}{6}(0)^{3}\right]+\left[\left(\frac{1}{2}(3)^{2}-\frac{5}{48}(3)^{3}\right)-\left(\frac{1}{2}(1)^{2}-\frac{5}{48}(1)^{3}\right)\right]=\frac{35}{24} \approx 1.45833
\end{aligned}
$$

\therefore The expected amount of gas pumped by the station in a week is about $(1.45833)(1000)=\mathbf{1 4 5 8 . 3 3}$ gallons
(f) What is the variance of the amount of gas pumped by the station in a week?

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right]=\int_{\operatorname{Supp}(X)} x^{2} \cdot f_{X}(x) d x=\int_{0}^{1} x^{2} \cdot\left(\frac{x}{2}\right) d x+\int_{1}^{3} x^{2} \cdot\left(1-\frac{5}{16} x\right) d x=\int_{0}^{1} \frac{1}{2} x^{3} d x+\int_{1}^{3}\left(x^{2}-\frac{5}{16} x^{3}\right) d x \\
&=\left[\frac{1}{8} x^{4}\right]_{x=0}^{x=1}+\left[\frac{1}{3} x^{3}-\frac{5}{64} x^{4}\right]_{x=1}^{x=3} \stackrel{F T}{=}\left[\frac{1}{8}(1)^{4}-\frac{1}{8}(0)^{4}\right]+\left[\left(\frac{1}{3}(3)^{3}-\frac{5}{64}(3)^{4}\right)-\left(\frac{1}{3}(1)^{3}-\frac{5}{64}(1)^{4}\right)\right]=\frac{61}{24} \approx 2.54167 \\
& \Longrightarrow \mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{61}{24}-\left(\frac{35}{24}\right)^{2}=\frac{239}{576} \approx 0.414930556
\end{aligned}
$$

\therefore The variance of amount of gas pumped by station in a week is about $(0.414930556)\left(1000^{2}\right)=414930.556$ gallons 2
(g) What is the standard deviation of the amount of gas pumped by the station in a week?
$\sigma_{X}=\sqrt{\mathbb{V}[X]}=\sqrt{0.414930556} \approx 0.64415$
\therefore The std dev of amount of gas pumped by the station in a week is about $(0.64415)(1000)=\mathbf{6 4 4 . 1 5}$ gallons

$$
f_{X}(x)=\left\{\begin{array}{cl}
\left(3 \times 10^{9}\right) / x^{4} & , \text { if } x>1000 \\
0 & , \text { if } x \leq 1000
\end{array}\right.
$$

(a) What is the support of random variable X ?
$\operatorname{Supp}(X)=($ Set of all meaningful values of $X)=[0, \infty) \quad O R \quad \operatorname{Supp}(X)=\left(\right.$ Set of all values of X s.t. $\left.f_{X}>0\right)=(1000, \infty)$
(b) Determine the cdf of $X, F_{X}(x)$.

$$
\begin{aligned}
& F_{X}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x \leq 1000 \\
\int_{-\infty}^{x} f_{X}(t) d t & , \text { if } x>1000
\end{array}=\left\{\begin{array}{cc}
0 & , \text { if } x \leq 1000 \\
\int_{1000}^{x} f_{X}(t) d t & , \text { if } x>1000
\end{array} \Longrightarrow F_{X}(x)=\begin{array}{cc}
0 & \text { if } x \leq 1000 \\
1-\frac{10^{9}}{x^{3}} & , \text { if } x>1000
\end{array}\right.\right. \\
& \int_{-\infty}^{x} f_{X}(t) d t=\int_{1000}^{x} \frac{3 \times 10^{9}}{t^{4}} d t=\left[\frac{3 \times 10^{9}}{(-3) t^{3}}\right]_{t=1000}^{t=x}=\left[-\frac{1 \times 10^{9}}{t^{3}}\right]_{t=1000}^{t=x} \stackrel{F T C}{=}\left(-\frac{10^{9}}{x^{3}}\right)-\left(-\frac{10^{9}}{1000^{3}}\right)=\frac{10^{9}}{10^{9}}-\frac{10^{9}}{x^{3}}
\end{aligned}
$$

(c) Using the cdf, what is the probability that a worker earns between $\$ 2000$ and $\$ 3000$ per month?

$$
\begin{aligned}
\mathbb{P}(2000 \leq X \leq 3000) & =\mathbb{P}(X \leq 3000)-\mathbb{P}(X \leq 2000)=F_{X}(3000)-F_{X}(2000)=\left(1-\frac{10^{9}}{(3000)^{3}}\right)-\left(1-\frac{10^{9}}{(2000)^{3}}\right) \\
& =\frac{10^{9}}{\left(2 \times 10^{3}\right)^{3}}-\frac{10^{9}}{\left(3 \times 10^{3}\right)^{3}}=\frac{1 \times 10^{9}}{8 \times 10^{9}}-\frac{1 \times 10^{9}}{27 \times 10^{9}}=\frac{1}{8}-\frac{1}{27}=\frac{19}{216} \approx \mathbf{0 . 0 8 7 9 6}
\end{aligned}
$$

(d) What is the mean monthly salary, μ_{X} ?

$$
\begin{aligned}
\mu_{X} & =\mathbb{E}[X]=\int_{\operatorname{Supp}(X)} x \cdot f_{X}(x) d x=\int_{1000}^{\infty} x \cdot \frac{3 \times 10^{9}}{x^{4}} d x=\int_{1000}^{\infty} \frac{3 \times 10^{9}}{x^{3}} d x=\left[-\frac{3 \times 10^{9}}{2 x^{2}}\right]_{x=1000}^{x \rightarrow \infty}=\left[-\frac{1.5 \times 10^{9}}{x^{2}}\right]_{x=1000}^{x \rightarrow \infty} \\
& \stackrel{F T C}{=}\left[\lim _{x \rightarrow \infty}\left(-\frac{1.5 \times 10^{9}}{x^{2}}\right)\right]-\left(-\frac{1.5 \times 10^{9}}{(1000)^{2}}\right)=0+\frac{1.5 \times 10^{9}}{\left(1 \times 10^{3}\right)^{2}}=\frac{1.5 \times 10^{9}}{1 \times 10^{6}}=1.5 \times 10^{3}=\$ \mathbf{1 5 0 0 . 0 0}
\end{aligned}
$$

(e) What is the variance of the monthly salary, σ_{X}^{2} ?

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right] \quad=\quad \int_{\operatorname{Supp}(X)} x^{2} \cdot f_{X}(x) d x=\int_{1000}^{\infty} x^{2} \cdot \frac{3 \times 10^{9}}{x^{4}} d x=\int_{1000}^{\infty} \frac{3 \times 10^{9}}{x^{2}} d x=\left[-\frac{3 \times 10^{9}}{x}\right]_{x=1000}^{x \rightarrow \infty} \\
& \stackrel{F T C}{=}\left[\lim _{x \rightarrow \infty}\left(-\frac{3 \times 10^{9}}{x}\right)\right]-\left(-\frac{3 \times 10^{9}}{(1000)}\right)=0+\frac{3 \times 10^{9}}{1 \times 10^{3}}=3 \times 10^{6}=3000000 \\
\therefore & \sigma_{X}^{2}=\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=3000000-(1500)^{2}=750,000 \text { dollars }^{2}
\end{aligned}
$$

(f) What is the median monthly salary, $\widetilde{\mu}_{X}$?

Solve the following equation: $\quad 0.5=F\left(\widetilde{\mu}_{X}\right) \Longrightarrow 1-\frac{10^{9}}{\left(\widetilde{\mu}_{X}\right)^{3}}=0.5 \Longrightarrow \frac{10^{9}}{\left(\widetilde{\mu}_{X}\right)^{3}}=0.5 \Longrightarrow \widetilde{\mu}_{X}=\sqrt[3]{\frac{10^{9}}{0.5}} \approx$
(g) What is the probability that a worker's monthly salary is within 2 standard deviations of the mean value?

$$
\begin{aligned}
\mathbb{P}\left(\left|X-\mu_{X}\right| \leq 2 \sigma_{X}\right) & =\mathbb{P}\left(-2 \sigma_{X} \leq X-\mu_{X} \leq 2 \sigma_{X}\right) \\
& =\mathbb{P}\left(\mu_{X}-2 \sigma_{X} \leq X \leq \mu_{X}+2 \sigma_{X}\right)=\mathbb{P}\left(X \leq \mu_{X}+2 \sigma_{X}\right)-\mathbb{P}\left(X \leq \mu_{X}-2 \sigma_{X}\right) \\
& =F_{X}\left(\mu_{X}+2 \sigma_{X}\right)-F_{X}\left(\mu_{X}-2 \sigma_{X}\right)=F_{X}(1500+2(866.0254))-F_{X}(1500-2(866.0254)) \\
& =F_{X}(3232.0508)-F_{X}(-232.0508)=\left(1-\frac{10^{9}}{(3232.0508)^{3}}\right)-0 \approx 0.97038
\end{aligned}
$$

EX 4.2.3: Given the following cdf of $X: \quad F_{X}(x)=\left\{\begin{array}{cl}0 & , \text { if } x \leq 0 \\ (x / 4)[1+\ln (4 / x)] & , \text { if } 0<x \leq 4 \\ 1 & , \text { if } x>4\end{array}\right.$

What is the corresponding pdf of $X, f_{X}(x)$?

$$
\begin{aligned}
f_{X}(x) & =F_{X}^{\prime}(x)=\frac{d}{d x}\left[\left(\frac{x}{4}\right)\left(1+\ln \left(\frac{4}{x}\right)\right)\right] \stackrel{(*)}{=} \frac{1}{4}\left[1+\ln \left(\frac{4}{x}\right)\right]+\left(\frac{x}{4}\right) \cdot \frac{d}{d x}\left[1+\ln \left(\frac{4}{x}\right)\right] \\
& =\frac{1}{4}\left[1+\ln \left(\frac{4}{x}\right)\right]+\left(\frac{x}{4}\right)\left[0+\left(\frac{x}{4}\right) \cdot \frac{d}{d x}\left[\frac{4}{x}\right]\right]=\frac{1}{4}\left[1+\ln \left(\frac{4}{x}\right)\right]+\frac{x^{2}}{16}\left[-\frac{4}{x^{2}}\right]=\frac{1}{4}+\frac{1}{4} \ln \left(\frac{4}{x}\right)-\frac{1}{4}=\frac{1}{4} \ln \left(\frac{4}{x}\right) \\
\therefore \quad f_{X}(x) & =\left\{\begin{array}{cl}
\frac{1}{4} \ln \left(\frac{4}{x}\right) & , \text { if } 0<x \leq 4 \\
0 & , \text { otherwise }
\end{array} \quad \text { OR } \quad(* *) \quad f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{4}[\ln 4-\ln x] & , \text { if } 0<x \leq 4 \\
0 & , \text { otherwise }
\end{array}\right.\right.
\end{aligned}
$$

$(*)$ Product Rule (from Calculus I): $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
(**) Logarithm Properties: $\quad \ln (A B)=\ln A+\ln B$
$\ln (A / B)=\ln A-\ln B$
$\ln \left(A^{k}\right)=k \ln A$

EX 4.2.4: Given the following cdf of $X: \quad F_{X}(x)=e^{-e^{-x}} \quad$ for $-\infty<x<\infty$
(a) Show that $\lim _{x \rightarrow-\infty} F_{X}(x)=0$.
$\lim _{x \rightarrow-\infty} F_{X}(x)=\lim _{x \rightarrow-\infty} e^{-e^{-x}} \stackrel{N S}{=} e^{-e^{-(-\infty)}}=e^{-e^{\infty}}=e^{-\infty}=0 \checkmark$
(b) Show that $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
$\lim _{x \rightarrow \infty} F_{X}(x)=\lim _{x \rightarrow \infty} e^{-e^{-x}} \stackrel{N S}{=} e^{-e^{-(\infty)}}=e^{-e^{-\infty}}=e^{-(0)}=e^{0}=1 \checkmark$
(c) What is the corresponding pdf of $X, f_{X}(x)$?
$f_{X}(x)=F_{X}^{\prime}(x)=\frac{d}{d x}\left[e^{-e^{-x}}\right] \stackrel{(*)}{=}\left(e^{-e^{-x}}\right) \cdot \frac{d}{d x}\left[-e^{-x}\right] \stackrel{(*)}{=} e^{-x} \cdot e^{-e^{-x}}$
$\therefore f_{X}(x)=e^{-x} \cdot e^{-e^{-x}}$ for $-\infty<x<\infty$
(*) Chain Rule (from Calculus I): $\frac{d}{d x}[f[g(x)]]=f^{\prime}[g(x)] \cdot g^{\prime}(x)$
(d) What is the median of $X, \widetilde{\mu}_{X}$?

Solve the equation: $\quad 0.5=F\left(\widetilde{\mu}_{X}\right) \quad \Longrightarrow \quad e^{-e^{\left(\tilde{\mu}_{X}\right)}}=0.5 \Longrightarrow-e^{-\left(\widetilde{\mu}_{X}\right)}=\ln (0.5)$

$$
\begin{aligned}
& \Longrightarrow \quad e^{-\tilde{\mu}_{X}}=-\ln (0.5)=-\ln (1 / 2) \stackrel{(*)}{=} \ln \left((1 / 2)^{-1}\right)=\ln 2 \\
& \Longrightarrow \quad e^{-\widetilde{\mu}_{X}}=\ln 2 \Longrightarrow-\widetilde{\mu}_{X}=\ln (\ln 2) \\
& \Longrightarrow \widetilde{\mu}_{X}=-\ln (\ln 2) \approx 0.36651
\end{aligned}
$$

(*) Logarithm Properties: $\quad \ln (A B)=\ln A+\ln B$
$\ln (A / B)=\ln A-\ln B$
$\ln \left(A^{k}\right)=k \ln A$
(e) What is the 80 th percentile of $X, x_{0.80}$?

Solve the equation: $\quad 0.80=F\left(x_{0.80}\right) \quad \Longrightarrow \quad e^{-e^{\left(x_{0.80}\right)}}=0.8 \Longrightarrow-e^{-\left(x_{0.80}\right)}=\ln (0.8)$

$$
\begin{aligned}
& \Longrightarrow \quad e^{-x_{0.80}}=-\ln (0.8)=-\ln (4 / 5) \stackrel{(*)}{=} \ln \left((4 / 5)^{-1}\right)=\ln (5 / 4) \\
& \Longrightarrow \quad e^{-x_{0.80}}=\ln (5 / 4) \Longrightarrow-x_{0.80}=\ln (\ln (5 / 4)) \\
& \Longrightarrow \quad x_{0.80}=-\ln (\ln (5 / 4)) \approx 1.49994
\end{aligned}
$$

(*) Logarithm Properties: $\quad \ln (A B)=\ln A+\ln B$
$\ln (A / B)=\ln A-\ln B$
$\ln \left(A^{k}\right)=k \ln A$

