- CDF OF A CONTINOUS R.V.: Let X be a continuous random variable.

Then, its cdf, denoted as $F_{X}(x)$, is defined as $\quad F_{X}(x):=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(\xi) d \xi=\int_{-\infty}^{x} f_{X}(t) d t$
Note that ξ is the lower-case Greek letter xi, pronounced "(kuh)-SEE".
Moreover, if you find that writing the Greek letter ξ looks like chaotic scribbles, use t instead.

- CDF AXIOMS: Let X be a continuous random variable. Then, its cdf $F_{X}(x)$, satisfies

Eventually Zero (One) to the Left (Right): $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \quad \lim _{x \rightarrow+\infty} F_{X}(x)=1$
Non-decreasing: $\quad x_{1} \leq x_{2} \Longrightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$
Continuous:

$$
F_{X} \in C(\mathbb{R})
$$

- OBTAINING PDF FROM CDF: Let X be a continuous r.v. with pdf $f_{X}(x)$ and $\operatorname{cdf} F_{X}(x)$. Then $F_{X}^{\prime}(x)=f_{X}(x)$
- EXPECTED VALUE (MEAN) OF A CONTINUOUS R.V.: Let X be a continuous r.v. with pdf $f_{X}(x)$.

Then the expected value (AKA mean) of X is $\quad \mathbb{E}[X]:=\int_{\operatorname{Supp}(X)} x \cdot f_{X}(x) d x$
It's possible (but rare) that the expected value is infinite: $\quad \mathbb{E}[X]=\infty$
NOTATION: The expected value of X is alternatively denoted by \bar{X} or μ_{X}.

- EXPECTED VALUE OF A FUNCTION OF CONTINUOUS R.V.: Let X be a continuous rv with pdf $f_{X}(x)$.

Let $h(x)$ be a single-variable function. Then the expected value (AKA mean) of $h(X)$ is

$$
\mathbb{E}[h(X)]:=\int_{\operatorname{Supp}(X)} h(x) \cdot f_{X}(x) d x
$$

It's possible (but rare) that the expected value is infinite: $\quad \mathbb{E}[h(X)]= \pm \infty$
NOTATION: The expected value of $h(X)$ is alternatively denoted by $\mu_{h(X)}$.

- VARIANCE OF A CONTINUOUS R.V.: Let X be a continuous rv with pdf $f_{X}(x)$ and mean μ_{X}.

Then the variance of X is

$$
\mathbb{V}[X]:=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{\operatorname{Supp}(X)}\left(x-\mu_{X}\right)^{2} \cdot f_{X}(x) d x
$$

It's possible (but rare) that the variance is infinite: $\mathbb{V}[X]=\infty$
NOTATION: The variance of X is alternatively denoted by σ_{X}^{2} or $\operatorname{Var}(X)$.

- EASIER FORMULA FOR VARIANCE: $\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$
- STANDARD DEVIATION OF A CONTINUOUS R.V.: $\sigma_{X}:=\sqrt{\mathbb{V}[X]}$
- PROPERTIES OF EXPECTED VALUE \& VARIANCE: Let real numbers $a<b$. Then:

$$
\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b \quad \mathbb{V}[a X+b]=a^{2} \cdot \mathbb{V}[X] \quad \sigma_{a X+b}=|a| \cdot \sigma_{X}
$$

- PERCENTILE OF A CONTINUOUS RV: Let X be continuous rv with pdf $f_{X}(x) \& \operatorname{cdf} F_{X}(x)$ and $0<p<1$.

$$
p=F_{X}\left(x_{p}\right) \Longleftrightarrow p=\int_{-\infty}^{x_{p}} f_{X}(\xi) d \xi \Longleftrightarrow p=\int_{-\infty}^{x_{p}} f_{X}(t) d t
$$

- MEDIAN OF A CONTINUOUS R.V.: Let X be continuous rv with pdf $f_{X}(x) \& \operatorname{cdf} F_{X}(x)$. Then:

$$
0.50=F_{X}\left(x_{0.50}\right) \Longleftrightarrow 0.50=\int_{-\infty}^{x_{0.50}} f_{X}(\xi) d \xi \Longleftrightarrow 0.50=\int_{-\infty}^{x_{0.50}} f_{X}(t) d t
$$

NOTATION: The median of X is alternatively denoted by \widetilde{X} or $\widetilde{\mu}_{X}$.

CONTINUOUS R.V.'S: PLOTS OF PDF, CDF, MEDIAN, PERCENTILE [DEVORE 4.2]

NOTE: $\operatorname{Prob}(\cdots)$ means the same thing (probability) as $\mathbb{P}(\cdots)$.

EX 4.2.1: A local gas station has three pumps, each of which can pump up to 1000 gallons per week.
Let $X \equiv$ (Total amount of gas (in 1000's of gallons) pumped at the station in a week). Then, X has the pdf:

$$
f_{X}(x)=\left\{\begin{array}{cl}
x / 2 & , \text { if } 0 \leq x<1 \\
1-(5 / 16) x & , \text { if } 1 \leq x \leq 3 \\
0 & , \text { otherwise }
\end{array}\right.
$$

(a) What is the support of random variable X ?
(b) Determine the cdf of $X, F_{X}(x)$.
(c) Using the cdf, what is the probability that the station will pump at most 500 gallons in a week?
(d) Using the cdf, what is the probability that the station will pump between 1000 and 2000 gallons in a week?
(e) What is the expected amount of gas pumped by the station in a week?
(f) What is the variance of the amount of gas pumped by the station in a week?
(g) What is the standard deviation of the amount of gas pumped by the station in a week?

$$
f_{X}(x)=\left\{\begin{array}{cl}
\left(3 \times 10^{9}\right) / x^{4} & , \text { if } x>1000 \\
0 & , \text { if } x \leq 1000
\end{array}\right.
$$

(a) What is the support of random variable X ?
(b) Determine the cdf of $X, F_{X}(x)$.
(c) Using the cdf, what is the probability that a worker earns between $\$ 2000$ and $\$ 3000$ per month?
(d) What is the mean monthly salary, μ_{X} ?
(e) What is the variance of the monthly salary, σ_{X}^{2} ?
(f) What is the median monthly salary, $\widetilde{\mu}_{X}$?
(g) What is the probability that a worker's monthly salary is within 2 standard deviations of the mean value?

EX 4.2.3: Given the following cdf of $X: \quad F_{X}(x)=\left\{\begin{array}{cl}0 & , \text { if } x \leq 0 \\ (x / 4)[1+\ln (4 / x)] & , \text { if } 0<x \leq 4 \\ 1 & , \text { if } x>4\end{array}\right.$

What is the corresponding pdf of $X, f_{X}(x)$?

EX 4.2.4: Given the following cdf of $X: \quad F_{X}(x)=e^{-e^{-x}} \quad$ for $-\infty<x<\infty$
(a) Show that $\lim _{x \rightarrow-\infty} F_{X}(x)=0$.
(b) Show that $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
(c) What is the corresponding pdf of $X, f_{X}(x)$?
(d) What is the median of $X, \widetilde{\mu}_{X}$?
(e) What is the 80th percentile of $X, x_{0.80}$?

