EX 4.3.1: The amount of rainfall (in inches) in Houston during March follows a Uniform $(a=1.52, b=4.54)$ distribution. Let X represent the aforementioned rainfall amount.
(a) What is the pdf of $X, f_{X}(x)$?
$X \sim \operatorname{Uniform}(a=1.52, b=4.54)$
$f_{X}(x)=\left\{\begin{array}{cl}\frac{1}{b-a} & , \text { if } a \leq x \leq b \\ 0 & , \text { otherwise }\end{array}=\left\{\begin{array}{cl}\frac{1}{4.54-1.52} & , \text { if } 1.52 \leq x \leq 4.54 \\ 0 & , \text { otherwise }\end{array} \quad \therefore \quad f_{X}(x)=\begin{array}{cl}\frac{1}{3.02} & , \text { if } 1.52 \leq x \leq 4.54 \\ 0 & , \text { otherwise }\end{array}\right.\right.$
(b) What is the cdf of $X, F_{X}(x)$?

$$
\begin{aligned}
& F_{X}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<1.52 \\
\int_{-\infty}^{x} \frac{1}{3.02} d t & , \text { if } 1.52 \leq x \leq 4.54 \\
1 & \therefore F_{X}(x)=\left(\begin{array}{cl}
0 & , \text { if } x<1.52 \\
\frac{x-1.52}{3.02} & , \text { if } 1.52 \leq x \leq 4.54 \\
1 & , \text { if } 4.54<x
\end{array}\right. \\
\int_{-\infty}^{x} \frac{1}{3.02} d t=\int_{1.52}^{x} \frac{1}{3.02} d t=\left[\frac{t}{3.02}\right]_{t=1.52}^{t=x} \stackrel{F T C}{=} \frac{x}{3.02}-\frac{1.52}{3.02}=\frac{x-1.52}{3.02}
\end{array}\right.
\end{aligned}
$$

(c) What is the expected amount of rainfall in Houston during March?
$\mathbb{E}[X]=\frac{b+a}{2}=\frac{4.54+1.52}{2}=3.03$ inches
(d) What is the variance of the amount of rainfall in Houston during March?
$\mathbb{V}[X]=\frac{(b-a)^{2}}{12}=\frac{(4.54-1.52)^{2}}{12}=0.76003$ inches 2
(e) What is the standard deviation of the amount of rainfall in Houston during March?
$\sigma_{X}=\sqrt{\mathbb{V}[X]}=\sqrt{0.76003} \approx 0.87180$ inches
(f) What is the probability that Houston receives at most 2 inches of rainfall during March of next year?
$\mathbb{P}(X \leq 2)=F_{X}(2)=\frac{2-1.52}{3.02} \approx \mathbf{0 . 1 5 8 9 4}$
(g) What is the probability that Houston receives between 2 and 3 inches of rainfall during March of next year?
$\mathbb{P}(2<X<3)=\mathbb{P}(X \leq 3)-\mathbb{P}(X \leq 2)=F_{X}(3)-F_{X}(2)=\frac{3-1.52}{3.02}-\frac{2-1.52}{3.02}=\frac{3-2}{3.02} \approx \mathbf{0 . 3 3 1 1 3}$
(h) What is the probability that Houston receives at least 2.5 inches of rainfall during March of next year? $\mathbb{P}(X \geq 2.5)=1-\mathbb{P}(X<2.5)=1-\mathbb{P}(X \leq 2.5)=1-F_{X}(2.5)=1-\frac{2.5-1.52}{3.02} \approx \mathbf{0 . 6 7 5 5 0}$
(i) What is the probability that Houston receives between 0.5 and 4 inches of rainfall during March of next year? $\mathbb{P}(0.5<X<4)=\mathbb{P}(X \leq 4)-\mathbb{P}(X \leq 0.5)=F_{X}(4)-F_{X}(0.5)=\frac{4-1.52}{3.02}-0 \approx \mathbf{0 . 8 2 1 1 9}$
(a) Using the provided standard normal cdf table, compute $\Phi(1.8)$.
$\Phi(1.8) \stackrel{\text { LOOKUP }}{\approx} 0.96407$
(b) Using the provided standard normal cdf table, compute $\Phi(-1.8)$.
$\Phi(-1.8)=1-\Phi(1.8) \stackrel{\text { LOOKUP }}{\approx} 1-0.96407=0.03593$
(c) Using the provided standard normal cdf table, compute $\mathbb{P}(Z \leq 2.47)$.
$\mathbb{P}(Z \leq 2.47)=\Phi(2.47) \stackrel{\text { LOOKUP }}{\approx} 0.9 .99324$
(d) Using the provided standard normal cdf table, compute $\mathbb{P}(Z \geq 2.47)$.

$$
\mathbb{P}(Z \geq 2.47)=1-\mathbb{P}(Z<2.47)=1-\mathbb{P}(Z \leq 2.47)=1-\Phi(2.47) \stackrel{\text { LOOKUP }}{\approx} 1-0.99324=0.00676
$$

(e) Using the provided standard normal cdf table, compute $\mathbb{P}(1.15<Z \leq 2.47)$.
$\mathbb{P}(1.15<Z \leq 2.47)=\mathbb{P}(Z \leq 2.47)-\mathbb{P}(Z \leq 1.15)=\Phi(2.47)-\Phi(1.15) \stackrel{\text { LOOKUP }}{\approx} 0.99324-0.87493=0.11831$
(f) Using the provided standard normal cdf table, compute $\mathbb{P}(Z>-2.3)$.
$\mathbb{P}(Z>-2.3)=1-\mathbb{P}(Z \leq-2.3)=1-\Phi(-2.3)=1-[1-\Phi(2.3)]=\Phi(2.3) \stackrel{\text { LOOKUP }}{\approx} 0.98928$
(g) Using the provided standard normal cdf table, compute $\mathbb{P}(-2.5<Z<-2.3)$.

$$
\begin{array}{rll}
\mathbb{P}(-2.5<Z<-2.3) & = & \mathbb{P}(Z \leq-2.3)-\mathbb{P}(Z \leq-2.5) \\
& = & \Phi(-2.3)-\Phi(-2.5) \\
& = & {[1-\Phi(2.3)]-[1-\Phi(2.5)]} \\
& = & \Phi(2.5)-\Phi(2.3) \\
& \stackrel{\text { LOOK }}{\approx} \text { P } & 0.99379-0.98928 \\
& = & \mathbf{0 . 0 0 4 5 1}
\end{array}
$$

(h) Using the provided standard normal cdf table, determine the $57^{\text {th }}$ percentile of $Z, z_{0.57}$.
(Interpolate if necessary, which means find the closest entry in the table.)

The closest table entries to 0.57 are:

$$
\begin{aligned}
& \Phi(0.17) \approx 0.56749 \Longrightarrow|0.57-0.56749|=|0.00251|=0.00251 \\
& \Phi(0.18) \approx 0.57142 \Longrightarrow|0.57-0.57142|=|-0.00142|=0.00142
\end{aligned}
$$

$\therefore \quad z_{0.57}{ }^{\text {REV }} \stackrel{\text { LOOKUP }}{\approx} \widehat{\mathbf{0 . 1 8}}$
(i) Using the provided standard normal cdf table, determine the $13^{\text {th }}$ percentile of $Z, z_{0.13}$.
(Interpolate if necessary, which means find the closest entry in the table.)
$z_{0.13}=-z_{1-0.13}=-z_{0.87} \stackrel{\text { REV }}{\text { LOOKUP }} \underset{\sim}{-\mathbf{1 . 1 3}}$

The closest table entries to 0.87 are:

$$
\begin{aligned}
& \Phi(1.12) \approx 0.86864 \Longrightarrow|0.87-0.86864|=|0.00136|=0.00136 \\
& \Phi(1.13) \approx 0.87076 \Longrightarrow|0.87-0.87076|=|-0.00076|=0.00076
\end{aligned}
$$

EX 4.3.3: The weights of cans of pineapples follow a normal distribution with a mean of 1000 g and std deviation of 50 g .
(a) What is the probability of a can of pineapples weighing more than 1075 grams?

$$
\mathbb{P}(X>1075)=\mathbb{P}\left(Z>\frac{1075-1000}{50}\right)=\mathbb{P}(Z>1.5)=1-\mathbb{P}(Z \leq 1.5)=1-\Phi(1.5) \stackrel{\text { LOOKUP }}{\approx} 1-0.93319=0.06681
$$

(b) What is the probability of a can of pineapples weighing between 970 and 1140 grams?

$$
\begin{array}{rll}
\mathbb{P}(970 \leq X \leq 1140) & =\mathbb{P}\left(\frac{970-1000}{50} \leq Z \leq \frac{1140-1000}{50}\right) \\
& =\mathbb{P}(-0.6 \leq Z \leq 2.8) \\
& =\mathbb{P}(Z \leq 2.8)-\mathbb{P}(Z \leq-0.6) \\
& =\Phi(2.8)-\Phi(-0.6) \\
& =\Phi(2.8)-[1-\Phi(0.6)] \\
& \stackrel{\text { LOOKUP }}{\approx} & 0.99744-[1-0.72575]=0.72319
\end{array}
$$

(c) What is the probability of a can of pineapples weighing less than 905 grams?

$$
\mathbb{P}(X<905)=\mathbb{P}\left(Z<\frac{905-1000}{50}\right)=\mathbb{P}(Z \leq-1.9)=\Phi(-1.9)=1-\Phi(1.9) \stackrel{\text { LOOKUP }}{\approx} 1-0.97128=\mathbf{0 . 0 2 8 7 2}
$$

(d) What is the probability of a can of pineapples weighing within 10 grams of 960 grams?

$$
\begin{aligned}
\mathbb{P}(|X-960| \leq 10) & =\mathbb{P}(-10 \leq X-960 \leq 10) \\
& =\mathbb{P}(950 \leq X \leq 970)=\mathbb{P}\left(\frac{950-1000}{50} \leq Z \leq \frac{970-1000}{50}\right) \\
& =\mathbb{P}(-1 \leq Z \leq-0.6) \\
& =\mathbb{P}(Z \leq-0.6)-\mathbb{P}(Z \leq-1) \\
& =\Phi(-0.6)-\Phi(-1) \\
& =[1-\Phi(0.6)]-[1-\Phi(1)] \\
& =\Phi(1)-\Phi(0.6) \\
\text { LOOKUP }_{\sim}^{\approx} & 0.84134-0.72575=\mathbf{0 . 1 1 5 5 9}
\end{aligned}
$$

(e) What is the probability of a can of pineapples weighing within two standard deviations of the mean?

$$
\begin{aligned}
\mathbb{P}\left(\left|X-\mu_{X}\right| \leq 2 \sigma_{X}\right) & =\mathbb{P}(-2 \sigma \leq X-\mu \leq 2 \sigma)=\mathbb{P}\left(-2 \leq \frac{X-\mu}{\sigma} \leq 2\right) \\
& =\mathbb{P}(-2 \leq Z \leq 2) \\
& =\mathbb{P}(Z \leq 2)-\mathbb{P}(Z \leq-2) \\
& =\Phi(2)-\Phi(-2) \\
& =\Phi(2)-[1-\Phi(2)] \\
& = \\
& 2 \cdot \Phi(2)-1 \\
& \stackrel{\text { LOKUP }}{\approx} \\
& (2)(0.97725)-1=\mathbf{0 . 9 5 4 5 0}
\end{aligned}
$$

(f) What is the probability of a can of pineapples weighing outside one standard deviation of the mean?

$$
\begin{array}{rll}
\mathbb{P}\left(\left|X-\mu_{X}\right|>\sigma_{X}\right) & = & \mathbb{P}\left(X-\mu_{X}<-\sigma_{X} \quad \text { or } X-\mu_{X}>\sigma_{X}\right) \\
& =\mathbb{P}(X-\mu<-\sigma \quad \cup \quad X-\mu>\sigma) \\
& \stackrel{P D}{=} & \mathbb{P}(X-\mu<-\sigma)+\mathbb{P}(X-\mu>\sigma)=\mathbb{P}\left(\frac{X-\mu}{\sigma}<-1\right)+\mathbb{P}\left(\frac{X-\mu}{\sigma}>1\right) \\
& =\mathbb{P}(Z<-1)+\mathbb{P}(Z>1) \\
& =\mathbb{P}(Z \leq-1)+[1-\mathbb{P}(Z \leq 1)] \\
& =\Phi(-1)+[1-\Phi(1)] \\
& =[1-\Phi(1)]+[1-\Phi(1)] \\
& =2 \cdot[1-\Phi(1)] \\
& \stackrel{\sim}{=} & 2 \cdot[1-0.84134]=\mathbf{0 . 3 1 7 3 2}
\end{array}
$$

