RANDOM SAMPLES [DEVORE 5.3]

• (A PRIORI) SAMPLE VS. SAMPLE-TO-BE-COLLECTED:

Every sample encountered in Chapter 1 was an **a priori sample**.

Just saying "sample" by itself will always translate to "a priori sample."

TYPE OF SAMPLE	NOTATION	HAS SAMPLE BEEN ALREADY COLLECTED?
(a priori) Sample	$x: x_1, x_2, \ldots, x_n$	Yes
Sample-to-be-Collected	X_1, X_2, \ldots, X_n	No

By contrast, a sample-to-be-collected has not been collected yet. (as the name immediately suggests)

This means data points of a sample-to-be-collected have some $\underline{\text{uncertainty}},$

and thus each data point is really a <u>random variable</u>!!

• **<u>RANDOM SAMPLES</u>**: A sample-to-be-collected X_1, \ldots, X_n is called a **random sample** if:

the X_i 's are all <u>identical</u> and independent.

If the X_i 's are <u>all discrete</u>, then the X_i 's all have the <u>exact same pmf</u> $p_X(k)$. If the X_i 's are <u>all continuous</u>, then the X_i 's all have the <u>exact same pdf</u> $f_X(x)$. Regardless of random variable type, the X_i 's have the <u>exact same cdf</u> $F_X(x)$.

• GENERIC EXAMPLES OF RANDOM SAMPLES:

Random Sample of size n = 4 from a discrete population with pmf $p_X(k)$: $X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \text{pmf } p_X(k)$ Random Sample of size n = 6 from a continuous population with pdf $f_X(x)$: $X_1, X_2, X_3, X_4, X_5, X_6 \stackrel{iid}{\sim} \text{pdf } f_X(x)$ Random Sample of size n = 3 from a population with cdf $F_X(x)$: $X_1, X_2, X_3, X_4, X_5, X_6 \stackrel{iid}{\sim} \text{pdf } f_X(x)$

• PARTICULAR EXAMPLES OF RANDOM SAMPLES:

Random Sample of size $n = 4$ f	From a Binomial(5, 0.3) population: $X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \text{Binomial}(5, 0.3)$
The X_i 's are <u>identical</u> , meaning	they have the same pmf: $p_{X_1}(k) = p_{X_2}(k) = p_{X_3}(k) = p_{X_4}(k) = {5 \choose k} 0.3^k \ 0.7^{5-k}$ $\operatorname{Supp}(X_1) = \operatorname{Supp}(X_2) = \operatorname{Supp}(X_3) = \operatorname{Supp}(X_4) = \{0, 1, 2, 3, 4, 5\}$
The X_i 's are <u>independent</u> :	$ \mathbb{P}(X_1 = 3 \cap X_2 > 1) = \mathbb{P}(X_1 = 3) \cdot \mathbb{P}(X_2 > 1) \mathbb{P}(X_1 > 3 \cap X_2 \le 4 \cap X_3 = 0) = \mathbb{P}(X_1 > 3) \cdot \mathbb{P}(X_2 \le 4) \cdot \mathbb{P}(X_3 = 0) $
Random Sample of size $n = 2$ f	from a Normal (μ, σ^2) population: $X_1, X_2 \stackrel{iid}{\sim} \operatorname{Normal}(\mu, \sigma^2)$
The X_i 's are <u>identical</u> , meaning	g they have the same cdf: $F_{X_1}(x) = F_{X_2}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ $\operatorname{Supp}(X_1) = \operatorname{Supp}(X_2) = (-\infty, \infty)$
The X_i 's are <u>independent</u> :	$ \mathbb{P}(X_1 = 3 \cap X_2 > 1) = \mathbb{P}(X_1 = 3) \cdot \mathbb{P}(X_2 > 1) \\ \mathbb{P}(X_1 \le 1 \cap X_2 \le 1) = \mathbb{P}(X_1 \le 1) \cdot \mathbb{P}(X_2 \le 1) $
Random Sample of size $n = 3$ f	from an Exponential $(\lambda = 10)$ population: $X_1, X_2, X_3 \stackrel{iid}{\sim} \text{Exponential}(\lambda = 10)$
The X_i 's are <u>identical</u> , meaning	g they have the same pdf: $f_{X_1}(x) = f_{X_2}(x) = f_{X_3}(x) = 10e^{-10x}$ $Supp(X_1) = Supp(X_2) = Supp(X_3) = [0, \infty)$
The X_i 's are <u>independent</u> :	$ \mathbb{P}(X_2 > 1 \ \cap \ X_3 \le 1) = \mathbb{P}(X_2 > 1) \cdot \mathbb{P}(X_3 \le 1) \\ \mathbb{P}(X_1 > 2 \ \cap \ X_2 > 2 \ \cap \ X_3 > 2) = \mathbb{P}(X_1 > 2) \cdot \mathbb{P}(X_2 > 2) \cdot \mathbb{P}(X_3 > 2) $

NOTATION: "iid" is shorthand for "identically and independently distributed"

©2016 Josh Engwer - Revised March 21, 2016

SAMPLING DISTRIBUTION OF A STATISTIC [DEVORE 5.3]

• STATISTIC OF A RANDOM SAMPLE: Recall from Chapter 1 the definition of a sample statistic:

A statistic of a sample is a meaningful characteristic of the sample.

	(A PRIORI) SAMPLE	RANDOM SAMPLE
	$x: x_1, x_2, \ldots, x_n$	X_1, X_2, \ldots, X_n
Sample Mean	$\overline{x} := \frac{x_1 + x_2 + \dots + x_n}{n}$	$\overline{X} := \frac{X_1 + X_2 + \dots + X_n}{n}$
Sample Minimum	$x_{(1)} := \min\{x_1, x_2, \dots, x_n\}$	$X_{(1)} := \min\{X_1, X_2, \dots, X_n\}$
Sample Maximum	$x_{(n)} := \max\{x_1, x_2, \dots, x_n\}$	$X_{(n)} := \max\{X_1, X_2, \dots, X_n\}$
Sample Range	$x_R := x_{(n)} - x_{(1)}$	$X_R := X_{(n)} - X_{(1)}$
Sample Variance	$s^2 := \frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2$	$S^2 := \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X})^2$
Sample Total	$\sum x_k := x_1 + x_2 + \cdots + x_n$	$\sum X_k := X_1 + X_2 + \cdots + X_n$
Sample Proportion	x/n	X/n

More precisely, a statistic is a <u>function</u> of the data points of the sample.

• SAMPLING DISTRIBUTION OF A STATISTIC (DEFINITION):

Let X_1, \ldots, X_n be a random sample of some population.

Let T be a statistic of the random sample.

Then the **sampling distribution** of statistic T is... ...the pmf $p_T(k)$ if the population is discrete. ...the pdf $f_T(x)$ if the population is continuous.

Moreover, the statistic T has its own support, Supp(T).

Finally, the sampling distribution of T can be visualized as... ...a density histogram if the population is discrete. ...a density curve if the population is continuous.

• SAMPLING DISTRIBUTION OF A STATISTIC (PROCEDURE):

<u>GIVEN</u>: Random sample X_1, \ldots, X_n of <u>finite discrete</u> population w/ pmf $p_X(k)$.

<u>TASK:</u> Find the sampling distribution $p_T(k)$ of statistic T of random sample.

- Enumerate all meaningful simultaneous values of the X_i's.
 Use the support of X₁, Supp(X₁), as guidance. (Order Matters!!)
- (2) For each enumeration of meaningful simultaneous values of the X_i 's, compute the statistic T & the joint probability using iid & pmf $p_X(k)$:

$$\mathbb{P}(X_1 = j_1 \cap X_2 = j_2 \cap \dots \cap X_n = j_n) \stackrel{iid}{=} p_X(j_1) \cdot p_X(j_2) \cdots p_X(j_n)$$

- (3) The support of statistic T, Supp(T), is the set of all values of T attained.
- (4) The probability of statistic T being a value in its support is the sum of the joint probabilities corresponding to that value of T.

EX 5 3 1.	Let size $(n = 2)$ random sample $X_1, X_2 \stackrel{iid}{\sim} \text{pmf } p_X(k)$ such that:	k	0	1	2
<u>EA 5.5.1.</u> Let		$p_X(k)$	0.65	0.25	0.10

(a) What is the population mean μ and population variance σ^2 ?

(b) Construct the sampling distributions for the sample mean \overline{X} and the sample variance S^2 .

(c) What is the expected value & variance of the sample mean, $\mu_{\overline{X}} \& \sigma_{\overline{X}}^2$?

(d) What is the expected value & variance of the sample variance, μ_{S^2} & $\sigma_{S^2}^2$?

C2016Josh Engwer – Revised March 21, 2016

EX 5.3.2:	Let size $(n = 3)$ random sample $Y_1, Y_2, Y_3 \stackrel{iid}{\sim} \text{pmf } p_Y(k)$ such that:	k		
		$p_Y(k)$	0.2	0.8

(a) What is the population mean μ and population variance σ^2 ?

(b) Construct the sampling distributions for the sample mean \overline{Y} and the sample total $Y_1 + Y_2 + Y_3$.

(c) What is the expected value & variance of the sample mean, $\mu_{\overline{Y}}$ & $\sigma_{\overline{Y}}^2$?

(d) What is the expected value & variance of the sample total, $\mu_{Y_1+Y_2+Y_3} \& \sigma^2_{Y_1+Y_2+Y_3}$?

C2016Josh Engwer – Revised March 21, 2016

- **<u>EX 5.3.3</u>**: Let size (n = 2) random sample $W_1, W_2 \stackrel{iid}{\sim}$ Binomial(2, 0.35).
 - (a) What is the population mean μ and population variance σ^2 ?
 - (b) Construct the sampling distributions for the sample mean \overline{W} and the sample minimum $W_{(1)}$.

(c) What is the expected value & variance of the sample mean, $\mu_{\overline{W}} \& \sigma_{\overline{W}}^2$?

(d) What is the expected value & variance of the sample total, $\mu_{W_{(1)}} \& \sigma^2_{W_{(1)}}$?

 $[\]textcircled{C}2016$ Josh Engwer – Revised March 21, 2016