- EXPECTED VALUE \& VARIANCE OF iid RV's: Given random sample X_{1}, \ldots, X_{n} and $c_{1}, \ldots, c_{n} \neq 0$. Then:
$\star \mathbb{E}\left[c_{1} X_{1}+\cdots+c_{n} X_{n}\right]=c_{1} \mathbb{E}\left[X_{1}\right]+\cdots+c_{n} \mathbb{E}\left[X_{n}\right]$
$\star \mathbb{V}\left[c_{1} X_{1}+\cdots+c_{n} X_{n}\right]=c_{1}^{2} \mathbb{V}\left[X_{1}\right]+\cdots+c_{n}^{2} \mathbb{V}\left[X_{n}\right]$
- SAMPLE MEAN PROPERTIES: Given a random sample from a distribution with mean $\mu \&$ variance σ^{2}. Then:

$$
\mu_{\bar{X}}=\mathbb{E}[\bar{X}]=\mu \quad \sigma_{\bar{X}}^{2}=\mathbb{V}[\bar{X}]=\sigma^{2} / n \quad \sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

- SAMPLE TOTAL PROPERTIES: Given a random sample from a distribution with mean $\mu \&$ variance σ^{2}. Then:
$\mu_{X_{1}+\cdots+X_{n}}=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=n \mu \quad \sigma_{X_{1}+\cdots+X_{n}}^{2}=\mathbb{V}\left[X_{1}+\cdots+X_{n}\right]=n \sigma^{2} \quad \sigma_{X_{1}+\cdots+X_{n}}=\sigma \sqrt{n}$
- SAMPLE MEAN \& TOTAL MEAN OF RANDOM SAMPLE FROM NORMAL POPULATION:

Let random sample $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Then:

- For any sample size $n>1, \quad \bar{X} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$
- For any sample size $n>1, \quad X_{1}+\cdots+X_{n} \sim \operatorname{Normal}\left(n \mu, n \sigma^{2}\right)$
- CENTRAL LIMIT THEOREM:

Let X_{1}, \ldots, X_{n} be a random sample from a non-normal distribution with mean μ and variance σ^{2}. Then:

- The sample mean \bar{X} is approximately normal as follows: $\bar{X} \xrightarrow{\text { approx }} \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$
- The sample total $X_{1}+\cdots+X_{n}$ is approximately normal as follows: $\quad X_{1}+\cdots+X_{n} \stackrel{\text { approx }}{\sim} \operatorname{Normal}\left(n \mu, n \sigma^{2}\right)$

Requirement for this normal approximation to be valid: $n>30$
The larger the sample size n, the better the approximation.

- NORMAL APPROXIMATION TO THE BINOMIAL: Let $X \sim \operatorname{Binomial}(n, p)$. Then:

$$
\begin{gathered}
X \stackrel{\text { approx }}{\sim} \operatorname{Normal}\left(\mu=n p, \sigma^{2}=n p q\right) \quad(\text { where } q=1-p) \\
\left.\mathbb{P}(X \leq x)=\operatorname{Bi}(x ; n, p) \approx \Phi\left(\frac{x+0.5-n p}{\sqrt{n p q}}\right) \quad \text { (where } q=1-p\right)
\end{gathered}
$$

Requirement for this normal approximation to be valid: $\min \{n p, n q\} \geq 10 \quad$ (i.e. $n p \geq 10$ and $n q \geq 10$)
Remember that normal distributions are symmetric. If $\min \{n p, n q\}<10$, then the binomial distribution is too skewed. The continuity correction term " +0.5 " improves the approximation.

- NORMAL APPROXIMATION TO THE POISSON: Let $X \sim \operatorname{Poisson}(\lambda)$. Then:

$$
\begin{gathered}
X \stackrel{\text { approx }}{\sim} \operatorname{Normal}\left(\mu=\lambda, \sigma^{2}=\lambda\right) \\
\mathbb{P}(X \leq x)=\operatorname{Pois}(x ; \lambda) \approx \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)
\end{gathered}
$$

Requirement for this normal approximation to be valid: $\quad \lambda>20$
Remember that normal distributions are symmetric. If $\lambda \leq 20$, then the binomial distribution is too skewed.
The continuity correction term " +0.5 " improves the approximation.

EX 5.4.1: Let random sample $X_{1}, X_{2}, \ldots, X_{20} \stackrel{i i d}{\sim} \operatorname{Normal}\left(\mu=3, \sigma^{2}=10\right)$.
(a) What is the probability that the sample mean is at most four?
(b) What is the probability that the sample mean is between 2.5 and 3.8 ?
(c) What is the probability that the sample mean is within two standard deviations of the population mean?

EX 5.4.2: Let $X_{1}, X_{2}, \ldots, X_{60}$ be a random sample of some non-normal population with mean $\mu=10 \&$ variance $\sigma^{2}=80$.
(a) What is the probability that the sample mean is at most eight?
(b) What is the probability that the sample mean is at least 12.5 ?
(c) What is the probability that the sample mean is outside 1.5 standard deviations of the population mean?
(a) What is the approximate probability that exactly ten flights are late in a day?
(b) What is the approximate probability that at most ten flights are late in a day?
(c) What is the approximate probability that at least ten flights are late in a day?

EX 5.4.4: A study of a bank's teller lines indicated that all day four customers are expected to be waiting per hour.
Assume that the number of customers waiting in line is modeled by a Poisson distribution.
(a) What is the approximate probability that upon visiting the bank from 9 am to 7 pm that thirty customers are waiting?
(b) What is the approx. probability that upon visiting the bank from 9 am to 7 pm that at least 30 customers are waiting?

