POINT ESTIMATION: UNBIASED ESTIMATORS [DEVORE 6.1]

• **POINT ESTIMATORS:** Given a random sample X_1, \ldots, X_n from a population with parameter θ .

Then a **point estimator** $\widehat{\theta}$ of parameter θ is a suitable statistic T of sample:

 $\widehat{\theta} = T(X_1, \dots, X_n)$

Recall from Chapter 5 that a statistic T is a function of the random sample.

 $\underline{\text{NOTE:}}$ Often there are several point estimators for a population parameter.

POPULATION PARAMETER	POINT ESTIMATOR(S)
Mean μ	$\widehat{\mu} := \overline{X}, \ \widehat{\mu} := \widetilde{X}, \ \widehat{\mu} := \overline{X}_{tr(10\%)}$
Proportion p	$\widehat{p} := X/n$
Variance σ^2	$\widehat{\sigma}^2 := S^2$

Random sample X_1,\ldots,X_{n_1} from population with mean μ_1 & variance σ_1^2

Random sample Y_1, \ldots, Y_{n_2} from population with mean μ_2 & variance σ_2^2

POPULATION PARAMETER	POINT ESTIMATOR(S)
Mean Difference $\mu_1 - \mu_2$	$\widehat{\mu}_1 - \widehat{\mu}_2 := \overline{X} - \overline{Y}$
Proportion Difference $p_1 - p_2$	$\widehat{p}_1 - \widehat{p}_2 := X/n_1 - Y/n_2$
Variance Ratio σ_1^2/σ_2^2	$\widehat{\sigma}_1^2/\widehat{\sigma}_2^2 := \frac{(n_1-1)S_1^2}{(n_2-1)S_2^2}$

• UNBIASED POINT ESTIMATORS: Given a population with parameter θ .

Then a point estimator $\widehat{\theta}$ is an **unbiased estimator** of θ if $\mathbb{E}[\ \widehat{\theta}\] = \theta$

Otherwise, the point estimator is **biased** with a **bias** of Bias[$\hat{\theta}$] := $\mathbb{E}[\hat{\theta}] - \theta$

i.e. A point estimator is unbiased if its sampling distribution is always "centered" at true value of population parameter.

If Bias $[\hat{\theta}] < 0$, then $\hat{\theta}$ tends to <u>underestimate</u> the population parameter value.

If Bias $[\hat{\theta}] > 0$, then $\hat{\theta}$ tends to <u>overestimate</u> the population parameter value.

• UNBIASED ESTIMATORS OF POPULATION MEAN & POPULATION VARIANCE:

Given a random sample X_1, \ldots, X_n from a population with mean μ and variance σ^2 .

Then \overline{X} and S^2 are unbiased estimators of μ and σ^2 , respectively.

• UNBIASED ESTIMATOR OF POPULATION PROPORTION:

Let random variable $X \sim \text{Binomial}(n, p)$.

Then sample proportion X/n is an unbiased estimator of pop. proportion p.

The two curves are the pdf's of the sampling distributions of $\hat{\theta}_1$ and $\hat{\theta}_2$

POINT ESTIMATION: UMVUE'S, STANDARD ERRORS [DEVORE 6.1]

• UMVUE: The "best" unbiased estimator is the one that varies the least:

The unbiased estimator with smallest variance is the uniformly minimum variance unbiased estimator (UMVUE).

• UMVUE OF NORMAL POPULATION:

Let random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$. Then \overline{X} is the UMVUE for μ .

- STANDARD ERROR: The standard error of a point estimator $\widehat{\theta}$ is $\sigma_{\widehat{\theta}} := \sqrt{\mathbb{V}[\ \widehat{\theta}\]}$
- ESTIMATED STANDARD ERROR: The estimated standard error of a point estimator, denoted $\hat{\sigma}_{\hat{\theta}}$, is the value of the standard error $\sigma_{\hat{\theta}}$ when any unknown parameters involved in its expression have themselves been estimated.

Standard Error of
$$\overline{X}$$
 is

$$\sigma_{\overline{X}} = \sigma/\sqrt{n}$$

Estimated Standard Error of \overline{X} is $\widehat{\sigma}_{\overline{X}} = \widehat{\sigma}/\sqrt{n} = s/\sqrt{n}$

• EXPECTATION & VARIANCE (REVISITED):

Let X_1, \ldots, X_n be a random sample from a population and $c_1, \ldots, c_n \neq 0$. Then:

(i)
$$\mathbb{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathbb{E}[X_1] + \dots + c_n\mathbb{E}[X_n]$$

(ii)
$$\mathbb{V}[c_1X_1 + \dots + c_nX_n] = c_1^2\mathbb{V}[X_1] + \dots + c_n^2\mathbb{V}[X_n]$$

(iii)
$$\mathbb{E}[X_1 - X_2] = \mathbb{E}[X_1] - \mathbb{E}[X_2]$$

(iv)
$$V[X_1 - X_2] = V[X_1] + V[X_2]$$

The two curves are the pdf's of the sampling distributions of $\widehat{\theta}_1$ and $\widehat{\theta}_2$

21.0, 15.0, 21.0, 21.4, 18.1, 19.2, 17.8, 19.7, 13.0, 35.0

- (a) Compute the point estimate of the population mean fuel efficiency μ .
- (b) Compute the point estimate of the population variance of the fuel efficiency σ^2 .
- (c) Compute the point estimate of the proportion of all such 6-cylinder vehicles whose fuel efficiency is less than 20 mpg.
- (d) Compute the estimated standard error $\widehat{\sigma}_{\overline{X}}$ of the point estimator \overline{X} .
- (e) Compute the estimated standard error $\hat{\sigma}_{\hat{p}}$ of the point estimator $\hat{p} := X/n$.

Given a random sample X_1, \ldots, X_{n_1} from a population with mean μ_1 and variance σ_1^2 , and EX 6.1.2: given a random sample Y_1, \ldots, Y_{n_2} from a population with mean μ_2 and variance σ_2^2 .

- (a) Show that the point estimator $\overline{X} \overline{Y}$ is an unbiased estimator of $\mu_1 \mu_2$.
- (b) Find the expression for the standard error of the point estimator $\overline{X} \overline{Y}$.
- (c) Find the expression for the estimated standard error of the point estimator $\overline{X} \overline{Y}$.

EX 6.1.3: Let random sample $X_1, X_2 \stackrel{iid}{\sim} \text{Poisson}(\lambda)$.

- (a) Find the expression for the standard error of the sample mean \overline{X} .
- (b) Show that point estimator $\frac{5X_1 2X_2}{3}$ is an unbiased estimator of the parameter λ .
- (c) Show that point estimator $\frac{7X_1 + 3X_2}{10}$ is an unbiased estimator of the parameter λ .
- (d) Which of the two point estimators, $\frac{5X_1 2X_2}{3}$ and $\frac{7X_1 + 3X_2}{10}$, is a better estimator of λ ?
- (e) Show that point estimator $X_1^2-X_2$ is <u>not</u> an unbiased estimator of the parameter λ .

EX 6.1.4: Sometimes it's easier to find a point estimator of a <u>function</u> of a population parameter.

Let random sample
$$X_1, \ldots, X_n \overset{iid}{\sim} \text{ pdf } f_X(x;\theta) := \frac{\theta}{x^4} \text{ for } 0 < \theta \leq x < \infty$$

(a) Show that the sample mean \overline{X} is <u>not</u> an unbiased estimator of $1/\theta$.

(b) Based on your work from the previous part, construct an unbiased estimator of $1/\theta$.