POINT ESTIMATION: UNBIASED ESTIMATORS [DEVORE 6.1] • **POINT ESTIMATORS:** Given a random sample X_1, \ldots, X_n from a population with parameter θ . Then a **point estimator** $\widehat{\theta}$ of parameter θ is a suitable statistic T of sample: $\widehat{\theta} = T(X_1, \dots, X_n)$ Recall from Chapter 5 that a statistic T is a function of the random sample. $\underline{\text{NOTE:}}$ Often there are several point estimators for a population parameter. | POPULATION PARAMETER | POINT ESTIMATOR(S) | |----------------------|---| | Mean μ | $\widehat{\mu} := \overline{X}, \ \widehat{\mu} := \widetilde{X}, \ \widehat{\mu} := \overline{X}_{tr(10\%)}$ | | Proportion p | $\widehat{p} := X/n$ | | Variance σ^2 | $\widehat{\sigma}^2 := S^2$ | Random sample X_1,\ldots,X_{n_1} from population with mean μ_1 & variance σ_1^2 Random sample Y_1, \ldots, Y_{n_2} from population with mean μ_2 & variance σ_2^2 | POPULATION PARAMETER | POINT ESTIMATOR(S) | |--|--| | Mean Difference $\mu_1 - \mu_2$ | $\widehat{\mu}_1 - \widehat{\mu}_2 := \overline{X} - \overline{Y}$ | | Proportion Difference $p_1 - p_2$ | $\widehat{p}_1 - \widehat{p}_2 := X/n_1 - Y/n_2$ | | Variance Ratio σ_1^2/σ_2^2 | $\widehat{\sigma}_1^2/\widehat{\sigma}_2^2 := \frac{(n_1-1)S_1^2}{(n_2-1)S_2^2}$ | • UNBIASED POINT ESTIMATORS: Given a population with parameter θ . Then a point estimator $\widehat{\theta}$ is an **unbiased estimator** of θ if $\mathbb{E}[\ \widehat{\theta}\] = \theta$ Otherwise, the point estimator is **biased** with a **bias** of Bias[$\hat{\theta}$] := $\mathbb{E}[\hat{\theta}] - \theta$ i.e. A point estimator is unbiased if its sampling distribution is always "centered" at true value of population parameter. If Bias $[\hat{\theta}] < 0$, then $\hat{\theta}$ tends to <u>underestimate</u> the population parameter value. If Bias $[\hat{\theta}] > 0$, then $\hat{\theta}$ tends to <u>overestimate</u> the population parameter value. #### • UNBIASED ESTIMATORS OF POPULATION MEAN & POPULATION VARIANCE: Given a random sample X_1, \ldots, X_n from a population with mean μ and variance σ^2 . Then \overline{X} and S^2 are unbiased estimators of μ and σ^2 , respectively. ### • UNBIASED ESTIMATOR OF POPULATION PROPORTION: Let random variable $X \sim \text{Binomial}(n, p)$. Then sample proportion X/n is an unbiased estimator of pop. proportion p. The two curves are the pdf's of the sampling distributions of $\hat{\theta}_1$ and $\hat{\theta}_2$ # POINT ESTIMATION: UMVUE'S, STANDARD ERRORS [DEVORE 6.1] • UMVUE: The "best" unbiased estimator is the one that varies the least: The unbiased estimator with smallest variance is the uniformly minimum variance unbiased estimator (UMVUE). ### • UMVUE OF NORMAL POPULATION: Let random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$. Then \overline{X} is the UMVUE for μ . - STANDARD ERROR: The standard error of a point estimator $\widehat{\theta}$ is $\sigma_{\widehat{\theta}} := \sqrt{\mathbb{V}[\ \widehat{\theta}\]}$ - ESTIMATED STANDARD ERROR: The estimated standard error of a point estimator, denoted $\hat{\sigma}_{\hat{\theta}}$, is the value of the standard error $\sigma_{\hat{\theta}}$ when any unknown parameters involved in its expression have themselves been estimated. Standard Error of $$\overline{X}$$ is $$\sigma_{\overline{X}} = \sigma/\sqrt{n}$$ Estimated Standard Error of \overline{X} is $\widehat{\sigma}_{\overline{X}} = \widehat{\sigma}/\sqrt{n} = s/\sqrt{n}$ ### • EXPECTATION & VARIANCE (REVISITED): Let X_1, \ldots, X_n be a random sample from a population and $c_1, \ldots, c_n \neq 0$. Then: (i) $$\mathbb{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathbb{E}[X_1] + \dots + c_n\mathbb{E}[X_n]$$ (ii) $$\mathbb{V}[c_1X_1 + \dots + c_nX_n] = c_1^2\mathbb{V}[X_1] + \dots + c_n^2\mathbb{V}[X_n]$$ (iii) $$\mathbb{E}[X_1 - X_2] = \mathbb{E}[X_1] - \mathbb{E}[X_2]$$ (iv) $$V[X_1 - X_2] = V[X_1] + V[X_2]$$ The two curves are the pdf's of the sampling distributions of $\widehat{\theta}_1$ and $\widehat{\theta}_2$ 21.0, 15.0, 21.0, 21.4, 18.1, 19.2, 17.8, 19.7, 13.0, 35.0 - (a) Compute the point estimate of the population mean fuel efficiency μ . - (b) Compute the point estimate of the population variance of the fuel efficiency σ^2 . - (c) Compute the point estimate of the proportion of all such 6-cylinder vehicles whose fuel efficiency is less than 20 mpg. - (d) Compute the estimated standard error $\widehat{\sigma}_{\overline{X}}$ of the point estimator \overline{X} . - (e) Compute the estimated standard error $\hat{\sigma}_{\hat{p}}$ of the point estimator $\hat{p} := X/n$. Given a random sample X_1, \ldots, X_{n_1} from a population with mean μ_1 and variance σ_1^2 , and EX 6.1.2: given a random sample Y_1, \ldots, Y_{n_2} from a population with mean μ_2 and variance σ_2^2 . - (a) Show that the point estimator $\overline{X} \overline{Y}$ is an unbiased estimator of $\mu_1 \mu_2$. - (b) Find the expression for the standard error of the point estimator $\overline{X} \overline{Y}$. - (c) Find the expression for the estimated standard error of the point estimator $\overline{X} \overline{Y}$. **EX 6.1.3:** Let random sample $X_1, X_2 \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. - (a) Find the expression for the standard error of the sample mean \overline{X} . - (b) Show that point estimator $\frac{5X_1 2X_2}{3}$ is an unbiased estimator of the parameter λ . - (c) Show that point estimator $\frac{7X_1 + 3X_2}{10}$ is an unbiased estimator of the parameter λ . - (d) Which of the two point estimators, $\frac{5X_1 2X_2}{3}$ and $\frac{7X_1 + 3X_2}{10}$, is a better estimator of λ ? - (e) Show that point estimator $X_1^2-X_2$ is <u>not</u> an unbiased estimator of the parameter λ . **EX 6.1.4:** Sometimes it's easier to find a point estimator of a <u>function</u> of a population parameter. Let random sample $$X_1, \ldots, X_n \overset{iid}{\sim} \text{ pdf } f_X(x;\theta) := \frac{\theta}{x^4} \text{ for } 0 < \theta \leq x < \infty$$ (a) Show that the sample mean \overline{X} is <u>not</u> an unbiased estimator of $1/\theta$. (b) Based on your work from the previous part, construct an unbiased estimator of $1/\theta$.