1-SAMPLE INFERENCE: INTRO TO CONFIDENCE INTERVALS [DEVORE 7.1]

• INTERVAL ESTIMATORS & CONFIDENCE INTERVALS (DEFINITION):

Given a population with parameter θ and random sample $\mathbf{X} := (X_1, \ldots, X_n)$.

A $100(1-\alpha)\%$ interval estimator $(\theta_{L,1-\alpha}(\mathbf{X}), \theta_{U,1-\alpha}(\mathbf{X}))$ for θ is an interval of values constructed from the random sample such that:

$$\mathbb{P}\left[\theta_{L,1-\alpha}(\mathbf{X}) < \theta < \theta_{U,1-\alpha}(\mathbf{X})\right] = 1 - \alpha$$

Moreover, suppose a sample $\mathbf{x} := (x_1, \ldots, x_n)$ is taken from the population.

The $100(1-\alpha)\%$ confidence interval $(\theta_{L,1-\alpha}(\mathbf{x}), \theta_{U,1-\alpha}(\mathbf{x}))$ for θ is the $100(1-\alpha)\%$ interval estimator but replacing each parameter involved in $\theta_{L,1-\alpha}(\mathbf{X}) \& \theta_{U,1-\alpha}(\mathbf{X})$ with its point estimator.

The percent $100(1 - \alpha)\%$ is called the **confidence level**.

• WRONG INTERPRETATIONS OF A CONFIDENCE INTERVAL:

"The probability that μ is between 9.42 years & 15.77 years is 0.95"

"There is a 95% **chance** that μ is between 9.42 years & 15.77 years."

WHY ARE THESE INTERPRETATIONS WRONG????

Because the population parameter μ is <u>not random</u>!!!

i.e. μ is not changing, μ is some fixed value – we just don't know that value!

Now, the sample mean \overline{X} of a random sample from this population is random.

Then, it can be shown that the interval estimator involved the following probability:

 $\mathbb{P}(\overline{X} - 3.325 < \mu < \overline{X} + 3.325) = 0.95$

So, in effect, what is actually random is the interval itself!!!!

• RIGHT INTERPRETATIONS OF A CONFIDENCE INTERVAL:

"There is 95% confidence that μ is between 9.42 years and 15.77 years."

"The probability that the next sample's computed CI will contain μ is 0.95"

"After taking many many samples from the population, about 95% of the resulting CI's will contain μ ."

• CONSTRUCTING CONFIDENCE INTERVALS (PROCEDURE):

<u>GIVEN</u>: Random sample $\mathbf{X} := (X_1, \dots, X_n)$ of a population with parameter θ .

<u>TASK:</u> Construct the $100(1 - \alpha)$ % Confidence Interval for θ . $(0 < \alpha < 1)$

(1) Produce a **pivot** $Q(\mathbf{X}; \theta)$ which is a statistic such that:

- Q is a function of both random sample X_1, \ldots, X_n and parameter θ .

- The pdf of Q, $f_Q(x)$, does <u>not</u> depend on θ or any other parameters.

(2) Find real numbers a < b such that the following probability holds:

$$\mathbb{P}[a < Q(\mathbf{X}; \theta) < b] = 1 - \alpha$$

(3) Manipulate the above inequalities to isolate parameter θ :

$$\mathbb{P}\left[\theta_{L,1-\alpha}(\mathbf{X}) < \theta < \theta_{U,1-\alpha}(\mathbf{X})\right] = 1 - \alpha$$

- (4) The $100(1-\alpha)\%$ interval estimator for θ is: $\theta \in (\theta_{L,1-\alpha}(\mathbf{X}), \theta_{U,1-\alpha}(\mathbf{X}))$
- (5) Obtain a sample $\mathbf{x} := (x_1, \ldots, x_n)$ from the population
- (6) Compute point estimator(s) for each parameter in $\theta_{L,1-\alpha}(\mathbf{X}) \& \theta_{U,1-\alpha}(\mathbf{X})$
- (7) Replace the each parameter with its point estimate, resulting in the CI

 $(\theta_{L,1-\alpha}(\mathbf{x}), \ \theta_{U,1-\alpha}(\mathbf{x}))$

^{©2016} Josh Engwer - Revised March 30, 2016

EX 7.1.1: Consider the Normal (μ, σ^2) population of all college student heights and the average height μ (in feet.)

(a) Construct a 95% interval estimator for μ .

(b) Construct a 90% interval estimator for μ .

(c) Suppose a sample of size (n = 10) is taken from the population. Moreover, the sample size $\overline{x} = 5.1$ ft and the std deviation s = 1.2 ft. Construct the 90% and 95% confidence intervals for μ .

(d) Suppose a sample of size (n = 20) is taken from the population. Moreover, the sample size $\overline{x} = 5.5$ ft and the std deviation s = 1.4 ft. Construct the 90% and 95% confidence intervals for μ .

(e) Which of the four confidence intervals from parts (c) & (d) has the most reliability and the most precision?

^{©2016} Josh Engwer – Revised March 30, 2016