Given a population with parameter $\theta$ and random sample $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$.
A $100(1-\alpha) \%$ interval estimator $\left(\theta_{L, 1-\alpha}(\mathbf{X}), \theta_{U, 1-\alpha}(\mathbf{X})\right)$ for $\theta$ is an interval of values constructed from the random sample such that:

$$
\mathbb{P}\left[\theta_{L, 1-\alpha}(\mathbf{X})<\theta<\theta_{U, 1-\alpha}(\mathbf{X})\right]=1-\alpha
$$

Moreover, suppose a sample $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ is taken from the population.
The $100(1-\alpha) \%$ confidence interval $\left(\theta_{L, 1-\alpha}(\mathbf{x}), \theta_{U, 1-\alpha}(\mathbf{x})\right)$ for $\theta$ is the $100(1-\alpha) \%$ interval estimator but replacing each parameter involved in $\theta_{L, 1-\alpha}(\mathbf{X}) \& \theta_{U, 1-\alpha}(\mathbf{X})$ with its point estimator.

The percent $100(1-\alpha) \%$ is called the confidence level.

## - WRONG INTERPRETATIONS OF A CONFIDENCE INTERVAL:

"The probability that $\mu$ is between 9.42 years \& 15.77 years is 0.95 "
"There is a $95 \%$ chance that $\mu$ is between 9.42 years \& 15.77 years."
WHY ARE THESE INTERPRETATIONS WRONG????
Because the population parameter $\mu$ is not random!!!
i.e. $\mu$ is not changing, $\mu$ is some fixed value - we just don't know that value!

Now, the sample mean $\bar{X}$ of a random sample from this population is random.
Then, it can be shown that the interval estimator involved the following probability:

$$
\mathbb{P}(\bar{X}-3.325<\mu<\bar{X}+3.325)=0.95
$$

So, in effect, what is actually random is the interval itself!!!!

- RIGHT INTERPRETATIONS OF A CONFIDENCE INTERVAL:
"There is $95 \%$ confidence that $\mu$ is between 9.42 years and 15.77 years."
"The probability that the next sample's computed CI will contain $\mu$ is 0.95 "
"After taking many many samples from the population, about $95 \%$ of the resulting CI's will contain $\mu$."
- CONSTRUCTING CONFIDENCE INTERVALS (PROCEDURE):

GIVEN: Random sample $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ of a population with parameter $\theta$.
TASK: Construct the $100(1-\alpha) \%$ Confidence Interval for $\theta . \quad(0<\alpha<1)$
(1) Produce a pivot $Q(\mathbf{X} ; \theta)$ which is a statistic such that:

- $Q$ is a function of both random sample $X_{1}, \ldots, X_{n}$ and parameter $\theta$.
- The pdf of $Q, f_{Q}(x)$, does not depend on $\theta$ or any other parameters.
(2) Find real numbers $a<b$ such that the following probability holds:

$$
\mathbb{P}[a<Q(\mathbf{X} ; \theta)<b]=1-\alpha
$$

(3) Manipulate the above inequalities to isolate parameter $\theta$ :

$$
\mathbb{P}\left[\theta_{L, 1-\alpha}(\mathbf{X})<\theta<\theta_{U, 1-\alpha}(\mathbf{X})\right]=1-\alpha
$$

(4) The $100(1-\alpha) \%$ interval estimator for $\theta$ is: $\quad \theta \in\left(\theta_{L, 1-\alpha}(\mathbf{X}), \theta_{U, 1-\alpha}(\mathbf{X})\right)$
(5) Obtain a sample $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ from the population
(6) Compute point estimator(s) for each parameter in $\theta_{L, 1-\alpha}(\mathbf{X}) \& \theta_{U, 1-\alpha}(\mathbf{X})$
(7) Replace the each parameter with its point estimate, resulting in the CI

$$
\left(\theta_{L, 1-\alpha}(\mathbf{x}), \theta_{U, 1-\alpha}(\mathbf{x})\right)
$$

(a) Construct a $95 \%$ interval estimator for $\mu$.
(b) Construct a $90 \%$ interval estimator for $\mu$.
(c) Suppose a sample of size $(n=10)$ is taken from the population.

Moreover, the sample size $\bar{x}=5.1 \mathrm{ft}$ and the std deviation $s=1.2 \mathrm{ft}$.
Construct the $90 \%$ and $95 \%$ confidence intervals for $\mu$.
(d) Suppose a sample of size $(n=20)$ is taken from the population.

Moreover, the sample size $\bar{x}=5.5 \mathrm{ft}$ and the std deviation $s=1.4 \mathrm{ft}$.
Construct the $90 \%$ and $95 \%$ confidence intervals for $\mu$.
(e) Which of the four confidence intervals from parts (c) \& (d) has the most reliability and the most precision?

