(a) Suppose a sample of size $(n=50)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.1 \mathrm{ft}$ and the sample std deviation $s=1.2 \mathrm{ft}$.
Construct the approximate 90% and 95% confidence intervals for μ.

$$
\bar{x} \pm z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

Approximate 90% CI for μ : $\quad 5.1 \pm \mathbf{1 . 6 4} \cdot \frac{1.2}{\sqrt{50}} \Longrightarrow 5.1 \pm 0.2783 \Longrightarrow(5.1-0.2783,5.1+0.2783)=(\mathbf{4 . 8 2 1 7}, \mathbf{5 . 3 7 8 3})$
Approximate 95% CI for $\mu: \quad 5.1 \pm \mathbf{1 . 9 6} \cdot \frac{1.2}{\sqrt{50}} \Longrightarrow 5.1 \pm 0.3326 \Longrightarrow(5.1-0.3326,5.1+0.3326)=(\mathbf{4 . 7 6 7 4}, \mathbf{5 . 4 3 2 6})$
(b) Suppose a sample of size $(n=100)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.5 \mathrm{ft}$ and the sample std deviation $s=1.4 \mathrm{ft}$.
Construct the approximate 90% and 95% confidence intervals for μ.

$$
\bar{x} \pm z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

Approximate 90% CI for $\mu: \quad 5.5 \pm \mathbf{1 . 6 4} \cdot \frac{1.4}{\sqrt{100}} \Longrightarrow 5.5 \pm 0.2296 \Longrightarrow(5.5-0.2296,5.1+0.2296)=(\mathbf{5 . 2 7 0 4}, \mathbf{5 . 7 2 9 6})$
Approximate 95% CI for $\mu: 5.5 \pm \mathbf{1 . 9 6} \cdot \frac{1.4}{\sqrt{100}} \Longrightarrow 5.5 \pm 0.2744 \Longrightarrow(5.5-0.2744,5.1+0.2744)=(\mathbf{5 . 2 5 2 3}, \mathbf{5 . 7 4 7 7})$
(c) Which of the four confidence intervals from parts (a) \& (b) has the most precision?

The CI with the most precision has the shortest width: \quad (5.2704, 5.7296)
(d) What is the minimum sample size n needed to construct an approx. 95\% CI for estimating μ to within 0.25 foot?

$$
w=0.25, \quad z_{\alpha / 2}^{*}=1.96, \quad \text { Best guess for } s=\frac{1.2+1.4}{2}=1.3
$$

$$
\therefore \quad n=\left\lceil\left(\frac{z_{\alpha / 2}^{*} \cdot s}{w}\right)^{2}\right\rceil=\left\lceil\left(\frac{(1.96)(1.3)}{0.25}\right)^{2}\right\rceil=\lceil 103.876864\rceil=104
$$

(e) What is the minimum sample size n needed to construct an approx. 95% CI for estimating μ to within 0.10 feet?

$$
\begin{aligned}
& w=0.10, \quad z_{\alpha / 2}^{*}=1.96, \quad \text { Best guess for } s=\frac{1.2+1.4}{2}=1.3 \\
& \therefore \quad n=\left\lceil\left(\frac{z_{\alpha / 2}^{*} \cdot s}{w}\right)^{2}\right\rceil=\left\lceil\left(\frac{(1.96)(1.3)}{0.10}\right)^{2}\right\rceil=\lceil 649.2304\rceil=\mathbf{6 5 0}
\end{aligned}
$$

(a) One hundred customers are surveyed with the result that thirty of them paid with a credit card.

Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.
$n=100, \quad$ "Success" $\equiv "$ Customer pays with credit card", $\widehat{p}=\frac{\# \text { Successes in Sample }}{\text { Sample Size }}=\frac{30}{100}=0.3 \Longrightarrow \widehat{q}=1-\widehat{p}=0.7$

$$
\frac{n \widehat{p}+0.5\left(z_{\alpha / 2}^{*}\right)^{2}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}} \pm z_{\alpha / 2}^{*} \cdot \frac{\sqrt{n \widehat{p} \widehat{q}+0.25\left(z_{\alpha / 2}^{*}\right)^{2}}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}}
$$

90% Wilson Score CI for $p: \frac{(100)(0.3)+(0.5)(\mathbf{1 . 6 4})^{2}}{100+(\mathbf{1 . 6 4})^{2}} \pm(\mathbf{1 . 6 4}) \cdot \frac{\sqrt{(100)(0.3)(0.7)+(0.25)(\mathbf{1 . 6 4})^{2}}}{100+(\mathbf{1 . 6 4})^{2}} \Longrightarrow 0.3052 \pm 0.0743$

$$
\Longrightarrow(0.3052-0.0743,0.3052+0.0743)=(\mathbf{0 . 2 3 0 9}, \mathbf{0 . 3 7 9 5})
$$

95% Wilson Score CI for $p: \quad \frac{(100)(0.3)+(0.5)(\mathbf{1 . 9 6})^{2}}{100+(\mathbf{1 . 9 6})^{2}} \pm(\mathbf{1 . 9 6}) \cdot \frac{\sqrt{(100)(0.3)(0.7)+(0.25)(\mathbf{1 . 9 6})^{2}}}{100+(\mathbf{1 . 9 6})^{2}} \Longrightarrow 0.3074 \pm 0.0885$

$$
\Longrightarrow(0.3074-0.0885,0.3074+0.0885)=(\mathbf{0 . 2 1 8 9}, \mathbf{0 . 3 9 5 9})
$$

(b) Two hundred customers are surveyed with the result that forty of them paid with a credit card.

Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.
$n=200, \quad$ "Success" $\equiv "$ Customer pays with credit card", $\widehat{p}=\frac{\# \text { Successes in Sample }}{\text { Sample Size }}=\frac{40}{200}=0.2 \Longrightarrow \widehat{q}=1-\widehat{p}=0.8$

$$
\frac{n \widehat{p}+0.5\left(z_{\alpha / 2}^{*}\right)^{2}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}} \pm z_{\alpha / 2}^{*} \cdot \frac{\sqrt{n \widehat{p} \widehat{q}+0.25\left(z_{\alpha / 2}^{*}\right)^{2}}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}}
$$

90% Wilson Score CI for $p: \frac{(200)(0.2)+(0.5)(\mathbf{1 . 6 4})^{2}}{200+(\mathbf{1 . 6 4})^{2}} \pm(\mathbf{1 . 6 4}) \cdot \frac{\sqrt{(200)(0.2)(0.8)+(0.25)(\mathbf{1 . 6 4})^{2}}}{200+(\mathbf{1 . 6 4})^{2}} \Longrightarrow 0.2040 \pm 0.0462$

$$
\Longrightarrow(0.2040-0.0462,0.2040+0.0462)=(\mathbf{0 . 1 5 7 8}, \mathbf{0 . 2 5 0 2})
$$

95% Wilson Score CI for $p: \quad \frac{(200)(0.2)+(0.5)(\mathbf{1 . 9 6})^{2}}{200+(\mathbf{1 . 9 6})^{2}} \pm(\mathbf{1 . 9 6}) \cdot \frac{\sqrt{(200)(0.2)(0.8)+(0.25)(\mathbf{1 . 9 6})^{2}}}{200+(\mathbf{1 . 9 6})^{2}} \Longrightarrow 0.2057 \pm 0.0552$

$$
\Longrightarrow(0.2057-0.0552,0.2057+0.0552)=(\mathbf{0 . 1 5 0 5}, \mathbf{0 . 2 6 0 9})
$$

HOW TO EFFECTIVELY ENTER THE PREVIOUS EXPRESSIONS ON CALCULATOR:

$$
\begin{array}{cc}
\frac{(200)(0.2)+(0.5)(\mathbf{1 . 9 6})^{2}}{200+(\mathbf{1 . 9 6})^{2}} & \left((200 * 0.2)+\left(0.5 * 1.96^{\wedge} 2\right)\right) /(200+1.96 \wedge 2) \\
\frac{\sqrt{(200)(0.2)(0.8)+(0.25)(\mathbf{1 . 9 6})^{2}}}{200+(\mathbf{1 . 9 6})^{2}} & \operatorname{SQRT}\left((200 * 0.2 * 0.8)+\left(0.25 * 1.96^{\wedge} 2\right)\right) /\left(200+1.96^{\wedge} 2\right)
\end{array}
$$

