- z CRITICAL VALUES:
$z_{\alpha / 2}^{*}$ is called a z critical value of the std normal dist s.t. its upper-tail probability is $\alpha / 2: \quad \mathbb{P}\left(Z>z_{\alpha / 2}^{*}\right)=\alpha / 2$ IMPORTANT: Do not confuse z critical value $z_{\alpha / 2}^{*}$ with the z percentile $z_{\alpha / 2}: \quad \mathbb{P}\left(Z \leq z_{\alpha / 2}\right)=\alpha / 2$
Finally, notice that $z_{\alpha / 2}^{*}$ is always positive.
Standard Normal Distribution

- LARGE-SAMPLE CI FOR POPULATION MEAN:

Given any population with mean μ. Let x_{1}, \ldots, x_{n} be a large sample ($n>40$) taken from the population.
Then the $100(1-\alpha) \%$ large-sample CI for μ is approximately

$$
\left(\bar{x}-z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}, \quad \bar{x}+z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}\right) \quad \text { OR WRITTEN MORE COMPACTLY } \quad \bar{x} \pm z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

If a half-width of w is desired for $100(1-\alpha) \%$ CI yielding $(\bar{x}-w, \bar{x}+w)$, then the minimum sample size required is

$$
n=\left\lceil\left(\frac{z_{\alpha / 2}^{*} \cdot s}{w}\right)^{2}\right\rceil, \quad \text { where } s \text { is the "best guess" for the sample std deviation. }
$$

- WILSON SCORE CI FOR POPULATION PROPORTION:

Given any population with proportion p of some "success." Let x_{1}, \ldots, x_{n} be a sample taken from the population.
Then the $100(1-\alpha) \%$ Wilson score CI for p is approximately

$$
\frac{n \widehat{p}+0.5\left(z_{\alpha / 2}^{*}\right)^{2}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}} \pm z_{\alpha / 2}^{*} \cdot \frac{\sqrt{n \widehat{p} \widehat{q}+0.25\left(z_{\alpha / 2}^{*}\right)^{2}}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}}
$$

where $\quad \widehat{p}:=\frac{X}{n} \equiv \frac{\text { \# Successes in Sample }}{\text { Sample Size }} \quad$ and $\quad \widehat{q}:=1-\widehat{p}$
(a) Suppose a sample of size $(n=50)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.1 \mathrm{ft}$ and the sample std deviation $s=1.2 \mathrm{ft}$.
Construct the approximate 90% and 95% confidence intervals for μ.
(b) Suppose a sample of size $(n=100)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.5 \mathrm{ft}$ and the sample std deviation $s=1.4 \mathrm{ft}$.
Construct the approximate 90% and 95% confidence intervals for μ.
(c) Which of the four confidence intervals from parts (a) \& (b) has the most precision?
(d) What is the minimum sample size n needed to construct an approx. 95\% CI for estimating μ to within 0.25 foot?
(e) What is the minimum sample size n needed to construct an approx. 95\% CI for estimating μ to within 0.10 feet?

EX 7.2.2: A dollar store owner wants to determine the proportion of customers who pay with a credit card.
(a) One hundred customers are surveyed with the result that thirty of them paid with a credit card.

Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.
(b) Two hundred customers are surveyed with the result that forty of them paid with a credit card. Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.

