1-SAMPLE INFERENCE: LARGE-SAMPLE CI'S FOR MEAN/PROPORTION [DEVORE 7.2]

• <u>z CRITICAL VALUES:</u>

 $z_{\alpha/2}^*$ is called a *z* critical value of the std normal dist s.t. its upper-tail probability is $\alpha/2$: $\mathbb{P}(Z > z_{\alpha/2}^*) = \alpha/2$ <u>IMPORTANT</u>: Do <u>not</u> confuse *z* critical value $z_{\alpha/2}^*$ with the *z* percentile $z_{\alpha/2}$: $\mathbb{P}(Z \le z_{\alpha/2}) = \alpha/2$ Finally, notice that $z_{\alpha/2}^*$ is always **positive**.

Standard Normal Distribution

• LARGE-SAMPLE CI FOR POPULATION MEAN:

Given any population with mean μ . Let x_1, \ldots, x_n be a large sample (n > 40) taken from the population.

Then the $100(1-\alpha)\%$ large-sample CI for μ is approximately

$$\left(\overline{x} - z_{\alpha/2}^* \cdot \frac{s}{\sqrt{n}}, \quad \overline{x} + z_{\alpha/2}^* \cdot \frac{s}{\sqrt{n}}\right) \quad \text{OR WRITTEN MORE COMPACTLY} \quad \overline{x} \pm z_{\alpha/2}^* \cdot \frac{s}{\sqrt{n}}$$

If a half-width of w is desired for $100(1-\alpha)$ % CI yielding $(\overline{x} - w, \overline{x} + w)$, then the minimum sample size required is

$$n = \left| \left(\frac{z_{\alpha/2}^* \cdot s}{w} \right)^2 \right|, \quad \text{where } s \text{ is the "best guess" for the sample std deviation.}$$

• WILSON SCORE CI FOR POPULATION PROPORTION:

Given any population with proportion p of some "success." Let x_1, \ldots, x_n be a sample taken from the population.

Then the $100(1-\alpha)\%$ Wilson score CI for p is approximately

$$\frac{n\widehat{p} + 0.5(z_{\alpha/2}^*)^2}{n + (z_{\alpha/2}^*)^2} \pm z_{\alpha/2}^* \cdot \frac{\sqrt{n\widehat{p}\widehat{q}} + 0.25(z_{\alpha/2}^*)^2}{n + (z_{\alpha/2}^*)^2}$$
where $\widehat{p} := \frac{X}{n} \equiv \frac{\# \text{ Successes in Sample}}{\text{Sample Size}}$ and $\widehat{q} := 1 - \widehat{p}$

©2016 Josh Engwer – Revised April 1, 2016

<u>EX 7.2.1</u> Consider the population of all college student heights and the average height μ (in feet.)

(a) Suppose a sample of size (n = 50) is taken from the population.

Moreover, the sample mean $\overline{x} = 5.1$ ft and the sample std deviation s = 1.2 ft.

Construct the approximate 90% and 95% confidence intervals for $\mu.$

(b) Suppose a sample of size (n = 100) is taken from the population.
Moreover, the sample mean x
= 5.5 ft and the sample std deviation s = 1.4 ft.
Construct the approximate 90% and 95% confidence intervals for μ.

- (c) Which of the four confidence intervals from parts (a) & (b) has the most precision?
- (d) What is the minimum sample size n needed to construct an approx. 95% CI for estimating μ to within 0.25 foot?
- (e) What is the minimum sample size n needed to construct an approx. 95% CI for estimating μ to within 0.10 feet?

^{©2016} Josh Engwer – Revised April 1, 2016

- **<u>EX 7.2.2</u>** A dollar store owner wants to determine the proportion of customers who pay with a credit card.
 - (a) One hundred customers are surveyed with the result that thirty of them paid with a credit card. Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.

(b) Two hundred customers are surveyed with the result that forty of them paid with a credit card. Construct approx 90% and 95% Wilson Score CI's for the proportion of all customers who pay with credit card.