EX 7.3.1: Consider the normal population of all college student heights and the average height μ (in feet.)
(a) Suppose a sample of size $(n=5)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.1 \mathrm{ft}$ and the sample std deviation $s=1.2 \mathrm{ft}$.
Construct the 90% and 95% confidence intervals for μ.

$$
\bar{x} \pm t_{n-1, \alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

90% CI for μ :

$$
5.1 \pm t_{4,0.05}^{*} \cdot \frac{1.2}{\sqrt{5}} \Longrightarrow 5.1 \pm \mathbf{2 . 1 3 2} \cdot \frac{1.2}{\sqrt{5}} \Longrightarrow 5.1 \pm 1.1442 \Longrightarrow(5.1-1.1442,5.1+1.1442)=(\mathbf{3 . 9 5 5 8}, \mathbf{6 . 2 4 4 2})
$$

95% CI for $\mu: \quad 5.1 \pm t_{4,0.025}^{*} \cdot \frac{1.2}{\sqrt{5}} \Longrightarrow 5.1 \pm \mathbf{2 . 7 7 6} \cdot \frac{1.2}{\sqrt{5}} \Longrightarrow 5.1 \pm 1.4898 \Longrightarrow(5.1-1.4898,5.1+1.4898)=(\mathbf{3 . 6 1 0 2}, \mathbf{6 . 5 8 9 8})$
(b) Suppose a sample of size $(n=10)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.5 \mathrm{ft}$ and the sample std deviation $s=1.4 \mathrm{ft}$.
Construct the 90% and 95% confidence intervals for μ.

$$
\bar{x} \pm t_{n-1, \alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

90% CI for $\mu: \quad 5.5 \pm t_{9,0.05}^{*} \cdot \frac{1.4}{\sqrt{10}} \Longrightarrow 5.5 \pm \mathbf{1 . 8 3 3} \cdot \frac{1.4}{\sqrt{10}} \Longrightarrow 5.5 \pm 0.8115 \Longrightarrow(5.5-0.8115,5.5+0.8115)=(\mathbf{4 . 6 8 8 5}, \mathbf{6 . 3 1 1 5)}$
95% CI for μ : $5.5 \pm t_{9,0.025}^{*} \cdot \frac{1.4}{\sqrt{10}} \Longrightarrow 5.5 \pm \mathbf{2 . 2 6 2} \cdot \frac{1.4}{\sqrt{10}} \Longrightarrow 5.5 \pm 1.0014 \Longrightarrow(5.5-1.0014,5.5+1.0014)=(\mathbf{4 . 4 9 8 6 , 6 . 5 0 1 4)}$
(c) Which of the four confidence intervals from parts (a) \& (b) has the most precision?

The CI with the most precision has the shortest width:
(4.6885, 6.3115)

