(a) Suppose a sample of size $(n=5)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.1 \mathrm{ft}$ and the sample std deviation $s=1.2 \mathrm{ft}$.
Construct the 90% and 95% confidence intervals for $\sigma^{2} \& \sigma$.
90% CI for $\sigma^{2}: \quad\left(\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}, \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}\right)=\left(\frac{(5-1)\left(1.2^{2}\right)}{\chi_{4,0.05}^{2 *}}, \frac{(5-1)\left(1.2^{2}\right)}{\chi_{4,0.95}^{2 *}}\right)=\left(\frac{5.76}{9.488}, \frac{5.76}{0.711}\right)=(\mathbf{0 . 6 0 7 1}, 8.1013) \mathrm{ft}^{2}$
95% CI for $\sigma^{2}: \quad\left(\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}, \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}\right)=\left(\frac{(5-1)\left(1.2^{2}\right)}{\chi_{4,0.025}^{2 *}}, \frac{(5-1)\left(1.2^{2}\right)}{\chi_{4,0.975}^{2 *}}\right)=\left(\frac{5.76}{11.143}, \frac{5.76}{0.484}\right)=\left(\mathbf{0 . 5 1 6 9 , 1 1 . 9 0 0 8)} \mathrm{ft}^{2}\right.$
90% CI for $\sigma: \quad\left(\sqrt{\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}}, \sqrt{\frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}}\right)=\left(\sqrt{\frac{5.76}{9.488}}, \sqrt{\frac{5.76}{0.711}}\right)=(\mathbf{0 . 7 7 9 2 , 2 . 8 4 6 3)} \mathrm{ft}$
95% CI for $\sigma: \quad\left(\sqrt{\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}}, \sqrt{\frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}}\right)=\left(\sqrt{\frac{5.76}{11.143}}, \sqrt{\frac{5.76}{0.484}}\right)=(\mathbf{0 . 7 1 9 0 , 3 . 4 4 9 8)} \mathrm{ft}$
(b) Suppose a sample of size $(n=10)$ is taken from the population.

Moreover, the sample mean $\bar{x}=5.5 \mathrm{ft}$ and the sample std deviation $s=1.4 \mathrm{ft}$.
Construct the 90% and 95% confidence intervals for $\sigma^{2} \& \sigma$.
90% CI for $\sigma^{2}: \quad\left(\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}, \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}\right)=\left(\frac{(10-1)\left(1.4^{2}\right)}{\chi_{9,0.05}^{2 *}}, \frac{(10-1)\left(1.4^{2}\right)}{\chi_{9,0.95}^{2 *}}\right)=\left(\frac{17.64}{16.919}, \frac{17.64}{3.325}\right)=(\mathbf{1 . 0 4 2 6}, \mathbf{5 . 3 0 5 3}) \mathrm{ft}^{2}$
95% CI for $\sigma^{2}: \quad\left(\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}, \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}\right)=\left(\frac{(10-1)\left(1.4^{2}\right)}{\chi_{9,0.025}^{2 *}}, \frac{(10-1)\left(1.4^{2}\right)}{\chi_{9,0.975}^{2 *}}\right)=\left(\frac{17.64}{19.023}, \frac{17.64}{2.700}\right)=\left(\mathbf{0 . 9 2 7 3 , 6 . 5 3 3 3)} \mathrm{ft}^{2}\right.$
90% CI for $\sigma: \quad\left(\sqrt{\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}}, \sqrt{\frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}}\right)=\left(\sqrt{\frac{17.64}{16.919}}, \sqrt{\frac{17.64}{3.325}}\right)=(\mathbf{1 . 0 2 1 1 , 2 . 3 0 3 3)} \mathrm{ft}$
95% CI for $\sigma: \quad\left(\sqrt{\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2 *}}}, \sqrt{\frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2 *}}}\right)=\left(\sqrt{\frac{17.64}{19.023}}, \sqrt{\frac{17.64}{2.700}}\right)=(\mathbf{0 . 9 6 3 0 , 2 . 5 5 6 0)} \mathrm{ft}$
(c) Which of the four confidence intervals for σ^{2} from parts (a) \& (b) has the most precision?

The CI for σ^{2} with the most precision has the shortest width: $\quad(\mathbf{1 . 0 4 2 6}, \mathbf{5 . 3 0 5 3}) \mathrm{ft}^{2}$

