OVERVIEW OF HYPOTHESIS TESTS [DEVORE 8.1]

• NULL & ALTERNATIVE HYPOTHESES:

The null hypothesis, denoted H_0 , is the claim initially assumed to be true.

The alternative hypothesis, denoted H_A , is a claim that contradicts H_0 .

A hypothesis test uses sample data & probability to decide whether the null hypothesis is a reasonable statement.

If sample evidence strongly contradicts H_0 , then the null hypothesis will be rejected in favor of the alternative hypothesis. If sample evidence does <u>not</u> strongly contradict H_0 , then it's reasonable to continue to believe that H_0 is still plausible.

i.e. THINK: "Innocent until proven guilty." i.e. THINK: The Scientific Method

The two possible conclusions from a hypothesis test are: "reject H_0 " OR "accept H_0 "

<u>NOTE:</u> Sometimes one says "fail to reject H_0 " instead of "accept H_0 ".

• <u>THE CORRECT FORMAT FOR HYPOTHESIS TESTS</u>: Hypothesis tests must conform to the following rules:

- Population parameter(s) must be involved. Statistics must <u>not</u> be involved.
- The null hypothesis H_0 must only involve equality. The alternative hypothesis H_A must <u>not</u> include equality.
- The asserted value in H_0 should also appear in H_A .

• TYPE I & TYPE II ERRORS:

A Type I error (AKA false positive) consists of rejecting null hypothesis H_0 when it is true.

A Type II error (AKA false negative) consists of not rejecting null hypothesis H_0 when it is false.

 $\alpha = \mathbb{P}(\text{Type I Error}) = \mathbb{P}(\text{Rejecting } H_0 \text{ when } H_0 \text{ is true})$ $\beta = \mathbb{P}(\text{Type II Error}) = \mathbb{P}(\text{Accepting } H_0 \text{ when } H_0 \text{ is false})$

	Decide to Reject H_0	Decide to Accept H_0
H_0 is actually true	Type I Error	(Correct Decision)
H_A is actually true	(Correct Decision)	Type II Error

Based on the scenario, one error type may be more serious than the other.

• <u>P-VALUES:</u>

Given random sample $\mathbf{X} := (X_1, X_2, \dots, X_n)$ of a population with parameter θ .

Suppose a sample $\mathbf{x} := (x_1, x_2, \dots, x_n)$ is taken from the population.

Finally, let $W(\mathbf{X}; \theta_0)$ be the **test statistic** for null hypothesis $H_0: \theta = \theta_0$.

The **P-value** is the probability of obtaining a value of the test statistic at least as contradictory to H_0 as the value computed from the sample, all while assuming that the null hypothesis is true:

 $\begin{array}{ll} H_0: \ \ \theta = \theta_0 \\ H_A: \ \ \theta > \theta_0 \end{array} \implies \text{P-value} := \mathbb{P}\left(W(\mathbf{X}; \theta_0) \ge W(\mathbf{x}; \theta_0) \text{ assuming } H_0 \text{ is true}\right) \\ H_0: \ \ \theta = \theta_0 \\ H_A: \ \ \theta < \theta_0 \end{aligned} \implies \text{P-value} := \mathbb{P}\left(W(\mathbf{X}; \theta_0) \le W(\mathbf{x}; \theta_0) \text{ assuming } H_0 \text{ is true}\right) \\ H_0: \ \ \theta = \theta_0 \\ H_A: \ \ \theta \neq \theta_0 \end{aligned} \implies \text{P-value} := \left(\begin{array}{c} \text{Requires distribution type of population} \\ \text{Will be encountered in the rest of Ch8} \end{array}\right)$

• **SIGNIFICANCE LEVELS**:

A conclusion is reached in a hypothesis test for θ by choosing a **significance level** α that is reasonably close to zero.

If P-value $\leq \alpha$, then H_0 will be rejected in favor of H_A

If P-value > α , then H_0 will be accepted (still considered plausible)

The significance levels used in practice are: $\alpha = 0.05$, $\alpha = 0.01$, $\alpha = 0.001$

Recall from earlier that $\alpha := \mathbb{P}(\text{Type I Error})$

Also, α is the same α used in $100(1 - \alpha)\%$ confidence intervals.

i.e. The lower the α -level, the more skeptical the decision maker is.

^{©2016} Josh Engwer - Revised April 8, 2016