• LARGE-SAMPLE *z*-TEST ABOUT POPULATION PROPORTION *p* (SUMMARY):

Population:	Unknown proportion p of "successes"
Random Sample:	$\mathbf{X} := (X_1, X_2, \dots, X_n)$
Realized Sample:	$\mathbf{x} := (x_1, x_2, \dots, x_n)$
Test Statistic $W(\mathbf{X}; p_0)$	$Z = \frac{(X/n) - p_0}{2} \qquad \qquad$
Test Statistic Value $W(\mathbf{x}; p_0)$	$z = -\frac{1}{\sqrt{p_0 q_0/n}}$ $z = -\frac{1}{\sqrt{p_0 q_0/n}}$
	$\widehat{p} := x/n, \ q_0 := 1 - p_0, \ \min\{np_0, nq_0\} \ge 10$
	$x\equiv \#$ "Successes" in realized sample ${\bf x}$
HYPOTHESIS TEST:	P-VALUE DETERMINATION:
HYPOTHESIS TEST: $H_0: p = p_0$ vs. $H_A: p > p_0$	P-VALUE DETERMINATION: P-value $= \mathbb{P}(Z \ge z) = 1 - \Phi(z)$
HYPOTHESIS TEST: $H_0: p = p_0$ vs. $H_A: p > p_0$ $H_0: p = p_0$ vs. $H_A: p < p_0$	P-VALUE DETERMINATION:P-value $= \mathbb{P}(Z \ge z) = 1 - \Phi(z)$ P-value $= \mathbb{P}(Z \le z) = \Phi(z)$
HYPOTHESIS TEST: $H_0: p = p_0$ vs. $H_A: p > p_0$ $H_0: p = p_0$ vs. $H_A: p < p_0$ $H_0: p = p_0$ vs. $H_A: p \neq p_0$	P-VALUE DETERMINATION:P-value $= \mathbb{P}(Z \ge z) = 1 - \Phi(z)$ P-value $= \mathbb{P}(Z \le z) = \Phi(z)$ P-value $= \mathbb{P}(Z \ge z) = 2 \cdot [1 - \Phi(z)]$

• LARGE-SAMPLE *z*-TEST ABOUT POPULATION PROPORTION *p* (P-VALUES VISUALIZED):

^{©2016} Josh Engwer – Revised April 14, 2016

- **EX 8.4.1:** A long-time dollar store owner determined 10 years ago that 38% of customers paid with a credit card. Recently, he looked backed at the payment methods of 80 customers from last quarter's records. He discovered that 51 of those customers purchased with a credit card. Does the sample data suggest that more customers are paying with a credit card these days?? (Use significance level $\alpha = 0.01$)
 - (a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
 - (b) Compute the appropriate test statistic value for this hypothesis test.
 - (c) Compute the resulting P-value.
 - (d) Make the appropriate decision.

EX 8.4.2: A long-time dollar store owner determined 5 years ago that 21 out of 50 customers paid with a credit card. Recently, he looked backed at the payment methods of 120 customers from last quarter's records. He discovered that fifty-five of those customers purchased with a credit card. Does the sample data suggest that the proportion of credit card paying customers has changed nowadays?? (Use significance level $\alpha = 0.05$)

- (a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
- (b) Compute the appropriate test statistic value for this hypothesis test.
- (c) Compute the resulting P-value.
- (d) Make the appropriate decision.

 $[\]textcircled{O}2016$ Josh Engwer – Revised April 14, 2016