- LARGE-SAMPLE $z$-TEST FOR $\mu_{1}-\mu_{2} \quad\left(\sigma_{1}, \sigma_{2}\right.$ UNKNOWN):

| Populations: | Any Two Populations with $\sigma_{1}, \sigma_{2}$ unknown |
| :---: | :---: |
| Random Samples: | $\mathbf{X}:=\left(X_{1}, X_{2}, \ldots, X_{n_{1}}\right)$ from $1^{\text {st }}$ population $\quad\left(n_{1}>40\right)$ |
|  | $\mathbf{Y}:=\left(Y_{1}, Y_{2}, \ldots, Y_{n_{2}}\right)$ from $2^{\text {nd }}$ population $\quad\left(n_{2}>40\right)$ |
|  | Random Samples $\mathbf{X} \& \mathbf{Y}$ are independent of one another |
| Realized Samples: | $\mathbf{x}:=\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right)$ from $1^{\text {st }}$ population with mean $\bar{x} \& \operatorname{std}$ dev $s_{1}$ |
|  | $\mathbf{y}:=\left(y_{1}, y_{2}, \ldots, y_{n_{2}}\right)$ from $2^{\text {nd }}$ population with mean $\bar{y} \& \operatorname{std}$ dev $s_{2}$ |
| Test Statistic Value | $z=\frac{(\bar{x}-\bar{y})-\delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ |


| HYPOTHESIS TEST: | P-VALUE DETERMINATION: |
| :---: | :---: |
| $H_{0}: \mu_{1}-\mu_{2}=\delta_{0} \quad$ vs. $H_{A}: \mu_{1}-\mu_{2}>\delta_{0}$ | P -value $\approx 1-\Phi(z)$ |
| $H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$ vs. $H_{A}: \mu_{1}-\mu_{2}<\delta_{0}$ | P -value $\approx \Phi(z)$ |
| $H_{0}: \mu_{1}-\mu_{2}=\delta_{0} \quad$ vs. $H_{A}: \mu_{1}-\mu_{2} \neq \delta_{0}$ | P -value $\approx 2 \cdot[1-\Phi(\|z\|)]$ |

Decision Rule:
If P -value $\leq \alpha \quad$ then reject $H_{0}$ in favor of $H_{A}$
If P-value $>\alpha$ then accept $H_{0}$ (i.e. fail to reject $H_{0}$ )

## - LARGE-SAMPLE $\quad z$-CI FOR $\mu_{1}-\mu_{2} \quad\left(\sigma_{1}, \sigma_{2}\right.$ UNKNOWN):

Given any two populations with means $\mu_{1}$ and $\mu_{2}$.
Let $x_{1}, x_{2}, \ldots, x_{n_{1}}$ be a large sample ( $n_{1}>40$ ) with mean $\bar{x}$ and std dev $s_{1}$ taken from the $1^{\text {st }}$ population.
Let $y_{1}, y_{2}, \ldots, y_{n_{2}}$ be a large sample ( $n_{2}>40$ ) with mean $\bar{y}$ and std dev $s_{2}$ taken from the $2^{\text {nd }}$ population.
Then the $100(1-\alpha) \%$ large-sample CI for $\mu_{1}-\mu_{2}$ is approximately

$$
\left((\bar{x}-\bar{y})-z_{\alpha / 2}^{*} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}, \quad(\bar{x}-\bar{y})+z_{\alpha / 2}^{*} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right)
$$

$$
(\bar{x}-\bar{y}) \pm z_{\alpha / 2}^{*} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

If a half-width of $w$ is desired for the $100(1-\alpha) \%$ CI yielding $(\bar{x}-\bar{y}) \pm w$, then the minimum sample size $n$ required to achieve this is:

$$
n=\left\lceil\frac{4\left(z_{\alpha / 2}^{*}\right)^{2}\left(s_{1}^{2}+s_{2}^{2}\right)}{w^{2}}\right\rceil, \quad \begin{gathered}
\text { where } s_{1}, s_{2} \text { are "best guesses" for } \\
\text { the population std dev's } \sigma_{1}, \sigma_{2}
\end{gathered}
$$

A manufacturing plant produces a certain type of brake pad used in big rig trucks.
A sample of 55 day-shift workers showed that the mean \# of brake pads produced was 310 with a std dev of 20 .
A sample of 60 night-shift workers showed that the mean \# of pads produced was 325 with a std dev of 26 .
Do these samples suggest that the average \# brake pads produced by the two shifts differ??
(Use significance level $\alpha=0.05$ )
(a) State the appropriate null hypothesis $H_{0} \&$ alternative hypothesis $H_{A}$.
(b) Compute the appropriate test statistic value for this hypothesis test.
(c) Compute the resulting P-value.
(d) Make the appropriate decision.
(e) Construct the approximate $95 \%$ CI for $\mu_{1}-\mu_{2}$.
(f) What's the minimum sample size needed to construct an approx $95 \%$ CI for estimating $\mu_{1}-\mu_{2}$ to within 1 brake pad?

