LARGE-SAMPLE TESTS/CI'S FOR $\mu_1 - \mu_2$ [DEVORE 9.1]

• LARGE-SAMPLE *z*-TEST FOR $\mu_1 - \mu_2$ (σ_1, σ_2 UNKNOWN):

Populations:	Any Two Populations with σ_1, σ_2 unknown		
Random Samples:	$\mathbf{X} := (X_1, X_2, \dots, X_{n_1}) \text{ from } 1^{st} \text{ population} \qquad (n_1 > 40)$		
	$\mathbf{Y} := (Y_1, Y_2, \dots, Y_{n_2}) \text{ from } 2^{nd} \text{ population} \qquad (n_2 > 40)$		
	Random Samples ${\bf X}$ & ${\bf Y}$ are independent of one another		
Realized Samples:	$\mathbf{x} := (x_1, x_2, \dots, x_{n_1})$ from 1^{st} population with mean \overline{x} & std dev s_1		
	$\mathbf{y} := (y_1, y_2, \dots, y_{n_2})$ from 2^{nd} population with mean \overline{y} & std dev s_2		
Test Statistic Value	$_{\sim} = (\overline{x} - \overline{y}) - \delta_0$		
$W(\mathbf{x},\mathbf{y};\delta_0)$	$z = \frac{1}{\sqrt{s_1^2 + s_2^2}}$		
	$\bigvee n_1 \ \ \ n_2$		
HYPOTHESIS TEST:		P-VALUE DETERMINATION:	
$H_0: \ \mu_1 - \mu_2 = \delta_0 \ \text{vs.} \ H_A: \ \mu_1 - \mu_2 > \delta_0$		P-value $\approx 1 - \Phi(z)$	
$H_0: \ \mu_1 - \mu_2 = \delta_0 \ \text{vs.} \ H_A: \ \mu_1 - \mu_2 < \delta_0$		P-value $\approx \Phi(z)$	
$H_0: \ \mu_1 - \mu_2 = \delta_0$	vs. $H_A: \mu_1 - \mu_2 \neq \delta_0$	P-value $\approx 2 \cdot [1 - \Phi(z)]$	
Decision Rule:	If P-value $\leq \alpha$ then reject H_0 in favor of H_A If P-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)		

• LARGE-SAMPLE *z*-CI FOR $\mu_1 - \mu_2$ (σ_1, σ_2 UNKNOWN):

Given any two populations with means μ_1 and μ_2 .

Let $x_1, x_2, \ldots, x_{n_1}$ be a large sample $(n_1 > 40)$ with mean \overline{x} and std dev s_1 taken from the 1st population. Let $y_1, y_2, \ldots, y_{n_2}$ be a large sample $(n_2 > 40)$ with mean \overline{y} and std dev s_2 taken from the 2nd population. Then the $100(1-\alpha)\%$ large-sample CI for $\mu_1 - \mu_2$ is approximately

$$\left((\overline{x}-\overline{y})-z_{\alpha/2}^*\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}},\quad (\overline{x}-\overline{y})+z_{\alpha/2}^*\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}\right)$$

— OR WRITTEN MORE COMPACTLY —

$$(\overline{x} - \overline{y}) \pm z^*_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

If a half-width of w is desired for the $100(1 - \alpha)\%$ CI yielding $(\overline{x} - \overline{y}) \pm w$, then the minimum sample size n required to achieve this is:

$$n = \left\lceil \frac{4(z_{\alpha/2}^*)^2(s_1^2 + s_2^2)}{w^2} \right\rceil, \qquad \text{where } s_1, s_2 \text{ are "best guesses" for} \\ \text{the population std dev's } \sigma_1, \sigma_2$$

EX 9.1.1: A manufacturing plant produces a certain type of brake pad used in big rig trucks.

A sample of 55 day-shift workers showed that the mean # of brake pads produced was 310 with a std dev of 20. A sample of 60 night-shift workers showed that the mean # of pads produced was 325 with a std dev of 26. Do these samples suggest that the average # brake pads produced by the two shifts differ?? (Use significance level $\alpha = 0.05$)

- (a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
- (b) Compute the appropriate test statistic value for this hypothesis test.
- (c) Compute the resulting P-value.
- (d) Make the appropriate decision.
- (e) Construct the approximate 95% CI for $\mu_1 \mu_2$.

(f) What's the minimum sample size needed to construct an approx 95% CI for estimating $\mu_1 - \mu_2$ to within 1 brake pad?