A sample of 10 day-shift workers showed that the mean $\#$ of brake pads produced was 52 with a std dev of 4.4.
A sample of 13 night-shift workers showed that the mean \# of brake pads produced was 55 with a std dev of 4.6.
Assume that the two corresponding populations are normally distributed.
Do these samples suggest that the average \# brake pads produced by the two shifts differ??
(Use significance level $\alpha=0.01$)
(a) State the appropriate null hypothesis $H_{0} \&$ alternative hypothesis H_{A}.

Let $\mu_{1} \equiv$ (Mean \# of brake pads produced by day shift)
Let $\mu_{2} \equiv$ (Mean \# of brake pads produced by night shift)

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{A}: \mu_{1} \neq \mu_{2}
\end{aligned} \Longrightarrow \begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{A}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

(b) Compute the appropriate test statistic value for this hypothesis test.
$t=\frac{(\bar{x}-\bar{y})-\delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(52-55)-0}{\sqrt{\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}}} \approx-\mathbf{- 1 . 5 8 9 1 7}$
(c) Compute the resulting P -value.

First, determine the appropriate \# degrees of freedom:

$$
\nu^{*}=\left\lfloor\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}\right\rfloor=\left\lfloor\frac{\left(\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}\right)^{2}}{\frac{\left(4.4^{2} / 10\right)^{2}}{10-1}+\frac{\left(4.6^{2} / 13\right)^{2}}{13-1}}\right\rfloor=\left\lfloor\frac{12.69990286}{0.637236965}\right\rfloor=\lfloor 19.92963929\rfloor=19
$$

P-value $=2 \cdot\left[1-\Phi_{t}\left(|t| ; \nu^{*}\right)\right]=2 \cdot\left[1-\Phi_{t}(1.6 ; \nu=19)\right] \stackrel{\text { LOOKUP }}{\approx} 2 \cdot[1-0.937]=\mathbf{0 . 1 2 6}$
(d) Make the appropriate decision.

Since P-value $=0.126>0.01=\alpha, \quad$ Accept (or Fail to Reject) H_{0}
There is not enough compelling evidence to conclude that the avg \# of brake pads produced by the two shifts differ.
(e) Construct the 99% CI for $\mu_{1}-\mu_{2}$.

$$
(\bar{x}-\bar{y}) \pm t_{\nu^{*}, \alpha / 2}^{*} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

99% CI for $\mu_{1}-\mu_{2}: \quad t_{\nu^{*}, \alpha / 2}^{*}=t_{19,0.005}^{L^{*}} \stackrel{\text { OOKUP }}{\approx} 2.861$

$$
(52-55) \pm \mathbf{2 . 8 6 1} \cdot \sqrt{\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}} \Longrightarrow-3 \pm 5.4009 \Longrightarrow(-3-5.4009,-3+5.4009)=(-\mathbf{8 . 4 0 0 9}, \mathbf{2 . 4 0 0 9})
$$

A negative sign in the CI indicates that the night shift produces more brake pads on average than the day shift. A positive sign in the CI indicates that the day shift produces more brake pads on average than the night shift.

