SMALL-SAMPLE TESTS/CI'S FOR $\mu_1 - \mu_2$ [DEVORE 9.2]

• SMALL-SAMPLE *t*-TEST FOR $\mu_1 - \mu_2$ (σ_1, σ_2 UNKNOWN):

Populations:	Two Normal Populations with σ_1, σ_2 unknown
Realized Samples:	$\mathbf{x} := (x_1, x_2, \dots, x_{n_1})$ with mean \overline{x} and std dev s_1
	$\mathbf{y} := (y_1, y_2, \dots, y_{n_2})$ with mean \overline{y} and std dev s_2
	Samples $\mathbf{x} \ \& \ \mathbf{y}$ are independent of one another
Test Statistic Value $W(\mathbf{x}, \mathbf{y}; \delta_0)$	$t = \frac{(\overline{x} - \overline{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \nu^* = \left[\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right]$

HYPOTHESIS TEST:

P-VALUE DETERMINATION:

 $H_0: \ \mu_1 - \mu_2 = \delta_0 \ \text{vs.} \ H_A: \ \mu_1 - \mu_2 > \delta_0 \ \text{P-value} = 1 - \Phi_t(t; \nu^*)$ $H_0: \ \mu_1 - \mu_2 = \delta_0 \ \text{vs.} \ H_A: \ \mu_1 - \mu_2 < \delta_0 \ \text{P-value} = \Phi_t(t; \nu^*)$ $H_0: \ \mu_1 - \mu_2 = \delta_0 \ \text{vs.} \ H_A: \ \mu_1 - \mu_2 \neq \delta_0 \ \text{P-value} = 2 \cdot [1 - \Phi_t(|t|; \nu^*)]$

Decision Rule: If P-value $\leq \alpha$ then reject H_0 in favor of H_A If P-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)

• SMALL-SAMPLE *t*-CI FOR $\mu_1 - \mu_2$ (σ_1, σ_2 UNKNOWN):

Given two <u>normal</u> populations with means μ_1 and μ_2 .

Let $x_1, x_2, \ldots, x_{n_1}$ be a sample with mean \overline{x} and std dev s_1 taken from the 1^{st} population.

Let $y_1, y_2, \ldots, y_{n_2}$ be a sample with mean \overline{y} and std dev s_2 taken from the 2^{nd} population.

Then the $100(1-\alpha)\%$ small-sample CI for $\mu_1 - \mu_2$ is

$$\left((\overline{x} - \overline{y}) - t^*_{\nu^*, \alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad (\overline{x} - \overline{y}) + t^*_{\nu^*, \alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)$$

— OR WRITTEN MORE COMPACTLY —

$$(\overline{x} - \overline{y}) \pm t^*_{\nu^*, \alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where

$$\nu^* = \left| \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right|$$

A sample of 10 day-shift workers showed that the mean $\#$ of brake pads produced was 52 with a std dev of 4.4
A sample of 13 night-shift workers showed that the mean $\#$ of brake pads produced was 55 with a std dev of 4.6
Assume that the two corresponding populations are normally distributed.
Do these samples suggest that the average # brake pads produced by the two shifts differ??
(Use significance level $\alpha = 0.01$)
(a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
(b) Compute the appropriate test statistic value for this hypothesis test.
(c) Compute the resulting P-value.
(d) Make the appropriate decision.
(e) Construct the 99% CI for $\mu_1 - \mu_2$.

EX 9.2.1: A manufacturing plant produces a certain type of brake pad used in big rig trucks.