The manufacturer of a sore throat medication has developed a new formulation that it claims to be more effective.
To evaluate the new medication, a test group of 120 current users try the new formulation.
After a four-week trial, 108 users from the test group indicated the new formulation was more effective.
Simultaneously, a control group of 150 users were given the current formulation but told it was the new one.
After a four-week trial, 114 users from the control group indicated it was an improvement.
Assume this is a randomized clinical trial, which means there was no bias/dishonesty/cheating involved.
Does the data suggest that the new formulation is more effective at treating a sore throat??
(Use significance level $\alpha=0.05$)
(a) State the appropriate null hypothesis $H_{0} \&$ alternative hypothesis H_{A}.

Let $p_{1} \equiv$ (Proportion of all users who indicate the new formulation is more effective)
Let $p_{2} \equiv$ (Proportion of all users who indicate the current formulation is more effective)

$$
\begin{aligned}
& H_{0}: p_{1}=p_{2} \\
& H_{A}: p_{1}>p_{2}
\end{aligned} \Longrightarrow \begin{aligned}
& H_{0}: p_{1}-p_{2}=0 \\
& H_{A}: p_{1}-p_{2}>0
\end{aligned}
$$

(b) Compute the appropriate test statistic value for this hypothesis test.

$$
\begin{aligned}
& \widehat{p}_{1}:=\frac{X}{n_{1}} \equiv \frac{\text { \# Successes in test group }}{\text { Sample Size of test group }}=\frac{108}{120} \Longrightarrow \frac{114}{150} \Longrightarrow \widehat{q}_{1}:=1-\widehat{p}_{1}=1-\frac{108}{120}=\frac{12}{120} \\
& \widehat{p}_{2}:=\frac{Y}{n_{2}} \equiv \frac{\text { \# Successes in control group }}{\text { Sample Size of control group }}=\widehat{q}_{2}:=1-\widehat{p}_{2}=1-\frac{114}{150}=\frac{36}{150} \\
& \widehat{p}:=\frac{X+Y}{n_{1}+n_{2}} \equiv \frac{\text { Total \# Successes in both groups }}{\text { Total Sample Size of both groups }}
\end{aligned}=\frac{108+114}{120+150}=\frac{222}{270} \Longrightarrow \widehat{q}:=1-\widehat{p}=1-\frac{222}{270}=\frac{48}{270} 0
$$

Note that this inference method is safe to use since: $\quad \min \left\{n_{1} \widehat{p}_{1}, n_{1} \widehat{q}_{1}, n_{2} \widehat{p}_{2}, n_{2} \widehat{q}_{2}\right\}=\min \{108,12,114,36\}=12 \geq 10$

$$
\therefore \quad z=\frac{\widehat{p}_{1}-\widehat{p}_{2}}{\sqrt{\hat{p} \widehat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(108 / 120)-(114 / 150)}{\sqrt{\left(\frac{222}{270}\right)\left(\frac{48}{270}\right)\left(\frac{1}{120}+\frac{1}{150}\right)}} \approx 2.98985
$$

(c) Compute the resulting P -value.

P-value $\approx 1-\Phi(z)=1-\Phi(2.99) \stackrel{\text { LOOKUP }}{\approx} 1-0.99861=0.00139$
(d) Make the appropriate decision.

Since P-value $\approx 0.00139 \leq 0.05=\alpha, \quad$ Reject H_{0} in favor of H_{A}
There is enough compelling evidence to suggest that
the new formulation is plausibly more effective at treating a sore throat than the current one.
(e) Construct the approximate two-sided 90% large-sample CI for $p_{1}-p_{2}$.

$$
\begin{gathered}
\text { Approximate } 90 \% \text { CI for } p_{1}-p_{2}: \quad\left(\widehat{p}_{1}-\widehat{p}_{2}\right) \pm z_{\alpha / 2}^{*} \cdot \sqrt{\frac{\widehat{p}_{1} \widehat{q}_{1}}{n_{1}}+\frac{\widehat{p}_{2} \widehat{q}_{2}}{n_{2}}} \\
\left(\frac{108}{120}-\frac{114}{150}\right) \pm \mathbf{1 . 6 4} \cdot \sqrt{\frac{(108 / 120)(12)(120)}{120}+\frac{(114 / 150)(36 / 150)}{150}} \\
\Longrightarrow 0.14 \pm 0.07272 \Longrightarrow(0.14-0.07272,0.14+0.07272)=(\mathbf{0 . 0 6 7 2 8}, \mathbf{0} 21272)
\end{gathered}
$$

