LARGE-SAMPLE TESTS/CI'S FOR $p_1 - p_2$ [DEVORE 9.4]

• LARGE-SAMPLE *z*-TEST FOR $p_1 - p_2$:

Populations:	Two Populations with proportions p_1, p_2 of some "success"	
Realized Samples:	$\mathbf{x} := (x_1, x_2, \dots, x_{n_1})$	$\mathbf{y} := (y_1, y_2, \dots, y_{n_2})$
	Samples \mathbf{x} & \mathbf{y} are independent of one another	
Test Statistic Value $W(\mathbf{x}, \mathbf{y})$	$z = rac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}\widehat{q}\left(rac{1}{n_1} + rac{1}{n_2} ight)}}$ where	$\widehat{p}_1 := X/n_1, \ \widehat{p}_2 := Y/n_2$ $\widehat{p} := (X+Y)/(n_1+n_2)$ $\widehat{q} := 1-\widehat{p}$
	$\min\{n_1\hat{p}_1, n_1\hat{q}_1, n_2\hat{p}_2, n_2\hat{q}_2\} \ge 10$	

HYPOTHESIS TEST:		P-VALUE DETERMINATION:
$H_0: p_1 - p_2 = 0$	vs. $H_A: p_1 - p_2 > 0$	P-value $\approx 1 - \Phi(z)$
$H_0: p_1 - p_2 = 0$	vs. $H_A: p_1 - p_2 < 0$	P-value $\approx \Phi(z)$
$H_0: p_1 - p_2 = 0$	vs. $H_A: p_1 - p_2 \neq 0$	P-value $\approx 2 \cdot [1 - \Phi(z)]$
Decision Rule:	If P-value $\leq \alpha$ If P-value $> \alpha$	then reject H_0 in favor of H_A then accept H_0 (i.e. fail to reject H_0)

• LARGE-SAMPLE *z*-CI FOR $p_1 - p_2$:

Given any two populations with proportions p_1 and p_2 of some "success".

Let $x_1, x_2, \ldots, x_{n_1}$ be a sample taken from the 1^{st} population.

Let $y_1, y_2, \ldots, y_{n_2}$ be a sample taken from the 2^{nd} population.

Then the $100(1-\alpha)\%$ large-sample CI for $p_1 - p_2$ is approximately

$$\begin{split} & \left((\hat{p}_1 - \hat{p}_2) - z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}, \quad (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right) \\ & \longrightarrow \quad \text{OR WRITTEN MORE COMPACTLY} \quad -- \\ & (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \\ & \text{where} \quad \hat{p}_1 := X/n_1 \quad, \quad \hat{q}_1 := 1 - \hat{p}_1 \\ & \hat{p}_2 := Y/n_2 \quad, \quad \hat{q}_2 := 1 - \hat{p}_2 \quad, \quad \min\{n_1 \hat{p}_1, n_1 \hat{q}_1, n_2 \hat{p}_2, n_2 \hat{q}_2\} \ge 10 \end{split}$$

©2016 Josh Engwer – Revised April 27, 2016

- **EX 9.4.1:** The manufacturer of a sore throat medication has developed a new formulation that it claims to be more effective. To evaluate the new medication, a **test group** of 120 current users try the new formulation. After a four-week trial, 108 users from the test group indicated the new formulation was more effective. Simultaneously, a **control group** of 150 users were given the current formulation but told it was the new one. After a four-week trial, 114 users from the control group indicated it was an improvement. Assume this is a **randomized clinical trial**, which means there was no bias/dishonesty/cheating involved. Does the data suggest that the new formulation is more effective at treating a sore throat?? (Use significance level $\alpha = 0.05$)
 - (a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
 - (b) Compute the appropriate test statistic value for this hypothesis test.

(c) Compute the resulting P-value.

- (d) Make the appropriate decision.
- (e) Construct the approximate two-sided 90% large-sample CI for $p_1 p_2$.

 $[\]textcircled{O}2016$ Josh Engwer – Revised April 27, 2016