Overview of Engineering Statistics Engineering Statistics Section 1.1

Josh Engwer

TTU

22 January 2016

Josh Engwer (TTU)

The Need for Statistics: Variation in Data

Throughout history, people have collected **data** about certain characteristics of objects, phenomena and processes.

Definition

Data (or a dataset) is a set of observations or measurements (data points).

Alas, no real-world dataset has all data points of the exact same value:

- Houses in a subdivision do <u>not</u> have the exact same price.
- US blockbuster films do <u>not</u> have an exact running time of 90 minutes.
- A collection of steel rods do <u>not</u> have the exact same tensile strength.
- Not all people answer a survey with the exact same set of responses.
- Not all gas stations in a city have the exact same price for unleaded fuel.
- Not all trees in a forest have the exact same branching.
- Not all cookies in a box produced in a factory are exactly the same size.

The data itself is overwhelming & provides little-to-no insight/info/conclusions! So how to use the data to reliably draw useful conclusions? **STATISTICS!!**

Definition

Statistics is the quantitative handling of data to draw useful conclusions.

Because the world is immensely complex:

- Humans are not 100% perfect.
- Instruments never measure to 100% accuracy.
- Materials/substances are never 100% pure.
- Behaviours and processes never act in 100% isolation.
- Future events can never be 100% predicted in advance. (see next slide)

The Need for Probability: Uncertainty in Processes

Life is full of processes whose outcome cannot be predicted ahead of time:

Definition

A random process is a process whose outcome cannot be predicted a priori.

Examples of random processes:

Gambling:Flipping a Coin, Games of Chance (Blackjack, Roulette, ...)Meteorology:Weather Systems, Path of a Tropical CycloneEconomics:Stock Prices, Demand for OilSocial Sciences:Behaviour in People (e.g. fads)Biology:Behaviour of Infectious DiseaseEngineering:Instrumentation Errors, Noise in SignalsPhysics:Entropy, Heisenberg's Uncertainty Principle

If we can't predict the outcome, what's the next best thing? Use **Probability** to determine the **likelihood** of a particular outcome!

Definition

Probability is the quantitative study of uncertainty.

Establishing Meaningful Data: Populations

How to ensure that collected data is lean & meaningful? Define a population!

Definition

A **population** is a well-defined set of <u>all</u> objects with desired characteristic(s). A **finite population** has a finite number of objects.

An **infinite population** has an infinite number of objects or is uncountable. A **concrete population** is a population that actually exists.

A **hypothetical population** is a population that <u>cannot exist</u> but is still useful.

A variable is a characteristic that may change among objects in a population.

POPULATION	POP. TYPE	VARIABLES (Numerical/Categorical)	
All students	finite	bound (N/C) would be (N) and color (C)	
	concrete		
All topsoil	infinite	pH (N/C), N_2 conc. (N), fertilizer (C)	
	concrete		
All possible	infinite	$p \dashv Group(N/C)$ region (C)	
topsoil pH levels	hypothetical	pri Group (N/C), region (C)	
All possible	finite	total movies (NI) stalemate? (NI/C)	
chess games	hypothetical		

The Need for Sampling: Enormous Populations

Unfortunately, most populations are vastly huge:

- There are hundreds of millions of people in the US.
- There are billions of cans of soda.
- There are trillions of cells in the human body.
- There are too many birds (no one knows an accurate count!)

The enormity of most populations of interest causes various issues:

- It takes too much time & money to poll every single person in the US!
- If taste-testers tested every can of soda, there would be no soda to sell!
- If every cell was drawn from a person, the person would die!
- It's too hard for scientists to capture & tag every bird!

The fix to this intractable problem is to take a **sample** of the population:

Definition

A **sample** is a subset of a population.

As it happens, most methods of statistics involve samples.

Josh Engwer (TTU)

Numerical & Categorical Variables

It's clear that some characteristics are numerical & others are not:

Definition

A **numerical variable**'s possible values are <u>numbers</u>. A **categorical variable**'s possible values are <u>labels</u>.

WARNING: Numbers can sometimes function as labels!

POPULATION	VARIABLE	TYPICAL SAMPLE
	height (N)	6.1', 3.9', 5.6', 4.0'
All students	height (C)	Tall, Short, Tall, Short
	eye color (C)	Blue, Blue, Hazel, Brown
	total moves (N)	23, 20, 57, 89, 89, 9, 121
All possible	stalemate? (C)	No, No, Yes, No, No, Yes
chess games	stalemate? (C)	0, 0, 1, 0, 0, 1
	stalemate? (N)	0, 0, 1, 0, 0, 1

As shown above, some variables can either be numerical or categorical. The choice in such a situation is usually determined by context.

Two Branches of Statistics with Probability as a Link

Unfortunately, people want to learn about characteristics of entire populations, but a sample is a subset of a population, and by comparison is quite small!

The solution is a branch of Statistics, called **Statistical Inference**:

Definition

Statistical Inference (or just **inference**) is the quantitative study of samples to draw conclusions of populations.

But it turns out inference involves describing the sample visually and/or numerically, which is another branch called **Descriptive Statistics**:

Definition

Descriptive Statistics is the organization, summary, visualization and presentation of data that conveys useful information about the data.

Since using samples to infer information about an entire population by its nature involves uncertainty, **Probability** also plays a role in inference.

Finally, **Probability** can draw conclusions about a sample from a population.

Univariate & Multivariate Data

How many characteristics are measured at the same time for each object leads to different methods:

Definition

Univariate data involves observations/measurements w.r.t. <u>one variable</u>. **Bivariate data** involves <u>simultaneous</u> measurements w.r.t. <u>two variables</u>. **Multivariate data** involves <u>simultaneous</u> measurements w.r.t. many variables.

EXAMPLE UNIVARIATE SAMPLES:

- Student Heights (in ft) measured 01/01/2016: 6.1, 3.9, 5.6, 4.0
- Student Weights (in lb) measured 11/11/2015: 205, 135, 183, 141
- Student Eye Colors measured 10/10/2015: Hazel, Blue, Brown, Hazel EXAMPLE BIVARIATE SAMPLE:
 - Student Heights & Weights (in ft & lb) measured 12/12/2015:

(6.1, 197), (3.9, 136), (5.6, 187), (4.0, 141)

EXAMPLE MULTIVARIATE SAMPLE:

 Student Heights, Weights & Eye Colors – measured 12/12/2015: (6.1, 197, Hazel), (3.9, 136, Blue), (5.6, 187, Brown), (4.0, 141, Hazel)

Statistics & Probability Covered in this Course

So what does this first course in Engineering Statistics cover?

Definition

(1st Course in Engineering Statistics)

A 1st course in Engineering Statistics (MATH 3342) covers:

Descriptive Statistics (Chapter 1) Probability (Chapter 2) **Random Variables** (Chapters 3-4) Central Limit Theorem (Sections 5.3,5.4) Point Estimation (Chapter 6) 1-Sample Inference (Chapters 7-8) 2-Sample Inference (Chapter 9)

Moreover, only **univariate** data will be used. **Bivariate** & **multivariate** data will <u>never</u> be considered in this course.

Math Requirements for this Course

The Bad News:

- Algebra: Powers, Roots, Polynomials, Rational Functions
- Algebra: Logarithms, Exponentials
- Algebra: Basic Factoring & Equation Solving
- Calculus I: Computation of Limits, Derivatives & Integrals : /
- Calculus II: Integration by Parts, Partial Fraction Decomposition :(
- Calculus II: Improper Integrals: $\int_0^\infty f(x) dx$, $\int_{-\infty}^\infty f(x) dx$:(
- Calculus II: Sums of Finite, Geometric & Telescoping Series
 :(
- Basic Set Theory: Unions, Intersections, Complements, Empty Set

The Good News:

- Some proofs will be shown, but HW & exams involve no proofs at all!
 :)
- No Calculus III (except for an occasional partial derivative in proofs) :)
- No trig functions (except from rare integrals: e.g. $\int \frac{1}{1+x^2} dx = \arctan x$) :)
- No vectors or matrices!!! Woohoo!!!

Statistics & Probability NOT Covered in this Course

So what does a second course in Engineering Statistics cover?

Definition

(2nd Course in Engineering Statistics)

A 2nd course in Engineering Statistics (in your dept??) would cover:

Bivariate Probability Many-Sample Inference Fitting Models to Data Goodness-of-Fit Inference Nonparametric Inference Quality Control Charts (Sections 5.1,5.2) (Chapters 10-11) (Chapters 12-13) (Chapter 14) (Chapter 15) (Chapter 16)

Beyond Engineering Statistics

- Bayesian Inference
- Robust Inference
- Decision Theory
- Survival Analysis
- Design of Experiments
- Sampling Theory
- Stochastic Processes
- Time Series Forecasting
- Statistical Physics
- Econometrics
- Game Theory
- Machine Learning
- Business Analytics
- Uncertainty Quantification
- Risk Management
- Monte Carlo Simulation
- Stochastic Differential Equations (SDE's)

- Ignore the stem-and-leaf display in Figure 1.1 (pg 5)
 - Stem-and-leaf displays will <u>never</u> be used (as explained in the 1.2 Slides)
- Skip "Enumerative Versus Analytic Studies" section (pg 9-10)
 - Both types of studies will be encountered throughout the course.
 - However, identifying/distinguishing their type is not crucial here.
- Skip "Collecting Data" section (pg 10)
 - There are several ways to obtain a sample from a population.
 - Some sampling methods may be more appropriate than others.
 - This is superfluous for Descriptive Statistics & Probability (Ch 1-4)
 - On the other hand, this is crucial for Statistical Inference (Ch 6-9)
 - Hence, this section will be covered in Section 5.3

Fin.