Probability: Sets, Sample Spaces, Events Engineering Statistics Section 2.1

Josh Engwer

TTU

01 February 2016

Josh Engwer (TTU)

Probability: Sets, Sample Spaces, Events

The Need for Probability: Uncertainty in Processes

Life is full of processes whose outcome cannot be predicted ahead of time:

Definition

A random process is a process whose outcome cannot be predicted a priori.

Examples of random processes:

Gambling:Flipping a Coin, Games of Chance (Blackjack, Roulette, ...)Meteorology:Weather Systems, Path of a Tropical CycloneEconomics:Stock Prices, Demand for OilSocial Sciences:Behaviour in People (e.g. fads)Biology:Behaviour of Infectious DiseaseEngineering:Instrumentation Errors, Noise in SignalsPhysics:Entropy, Heisenberg's Uncertainty Principle

If we can't predict the outcome, what's the next best thing? Use **Probability** to determine the **likelihood** of a particular outcome!

Definition

Probability is the quantitative study of uncertainty.

Josh Engwer (TTU)

Sets & Sequences (Definitions & Examples)

Sets and sequences are among the most fundamental mathematical objects:

Definition

A set is a possibly infinite, unique, unordered list of elements.

A **sequence** is a possibly infinite, varying, arbitrary, ordered list of elements.

Sets are written as comma-separated lists enclosed by braces.

Sequences are written as comma-separated lists enclosed by parentheses. Finite sequences can also be written as lists w/o commas and parentheses.

Set(s):	$\{1, 2, 3\}, \{1, 2, 3, 4, \cdots\},\$	$\{a,b,c\},\{a,b,c,d,\cdots\}$	
Not Set(s):	$\{1, 2, 2\}, \{1, 1, 1, 4, \cdots\},\$	$\{a,a,c\},\{a,a,a,d,\cdots\}$	
	(1, 2, 3), (1, 2, 2),	(a,b,c),(a,b,b),	aba
Sequence(s):	$(1,2,3,\cdots),$	$(a,b,c,\cdots),$	abb
	$(1,2,2,\cdots)$	(a, b, b, \cdots)	ubb

A set can contain sets or sequences: $\{(1,2), \{a,b\}, (a,c), bc, \{1,2\}\}$ Be careful with number sequences: (1,2,3,4) = 1234 BUT $(12,34) \neq 1234$

Definition

(Experiments, Outcomes, Sample Spaces, Events)

A **random process** is a process whose outcome cannot be predicted a priori. An **experiment** is any observation of a random process.

The **outcomes** $\omega_1, \omega_2, \ldots$ of an experiment are the different possible results. The **sample space** Ω of an experiment is the set of all possible outcomes. An **event** *E* is a subset of the sample space: $E \subseteq \Omega$

 Ω is the upper-case Greek letter omega.

 ω is the lower-case Greek letter omega.

<u>**REMARK:</u>** The **empty set**, \emptyset , is the event with no outcomes in it. <u>**REMARK:**</u> The **empty set**, \emptyset , is always a subset of the sample space: $\emptyset \subseteq \Omega$ </u>

Games of Chance & Fair Objects

Some experiments involve games of chance such as:

- Flipping coins
- Rolling dice (of any number of sides)
- Spinning a Roulette wheel

Quite often, the coins & dice will be fair:

Definition

(Fair Coins & Fair Dice)

A fair coin has an equal chance of either side showing up upon flipping.

A fair die has an equal chance of any of its sides showing up upon rolling.

GOOD NEWS:

Games of chance requiring a <u>deck of cards</u> (blackjack, poker, ...) will <u>not</u> be considered in this course.

- (a) Determine the sample space Ω for the experiment.
- (b) Write each event as a subset of the sample space:
 - Event $E_1 \equiv$ Two heads occur
 - Event $E_2 \equiv$ A head & a tail occur
 - Event $E_3 \equiv$ First coin is tails

- (a) Determine the sample space Ω for the experiment. Let $H \equiv$ Heads AND $T \equiv$ Tails
- (b) Write each event as a subset of the sample space:

Event $E_1 \equiv$ Two heads occur

Event $E_2 \equiv$ A head & a tail occur

Event $E_3 \equiv$ First coin is tails

(a) Determine the sample space Ω for the experiment. Let $H \equiv$ Heads AND $T \equiv$ Tails

 $\Omega = \{ (H, H), (H, T), (T, H), (T, T) \} \mid \mathsf{OF}$

$$\Omega = \{HH, HT, TH, TT\}$$

(b) Write each event as a subset of the sample space:

Event $E_1 \equiv$ Two heads occur

Event $E_2 \equiv$ A head & a tail occur

Event $E_3 \equiv$ First coin is tails

(a) Determine the sample space Ω for the experiment. Let $H \equiv$ Heads AND $T \equiv$ Tails

 $\left| \Omega = \{ (H,H), (H,T), (T,H), (T,T) \} \right| \quad \mathsf{OR} \quad \left| \Omega = \{ HH, HT, TH, TT \}$

(b) Write each event as a subset of the sample space:
Event *E*₁ ≡ Two heads occur
Event *E*₂ ≡ A head & a tail occur
Event *E*₃ ≡ First coin is tails

$$E_1 = \{(H, H)\}$$
 OR $E_1 = \{HH\}$

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.

(a) Determine the sample space Ω for the experiment. Let $H \equiv$ Heads AND $T \equiv$ Tails

 $\Omega = \{(H, H), (H, T), (T, H), (T, T)\} \mid \mathsf{OR} \mid \Omega = \{HH, HT, TH, TT\}$

(b) Write each event as a subset of the sample space:

Event $E_1 \equiv$ Two heads occur Event $E_2 \equiv$ A head & a tail occur Event $E_3 \equiv$ First coin is tails

$$\begin{bmatrix} E_1 = \{(H, H)\} \end{bmatrix} \text{ OR } \begin{bmatrix} E_1 = \{HH\} \end{bmatrix}$$
$$\begin{bmatrix} E_2 = \{(H, T), (T, H)\} \end{bmatrix} \text{ OR } \begin{bmatrix} E_2 = \{HT, TH\} \end{bmatrix}$$

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.

(a) Determine the sample space Ω for the experiment. Let $H \equiv$ Heads AND $T \equiv$ Tails

 $\Omega = \{(H,H), (H,T), (T,H), (T,T)\} \mid \mathsf{OR} \mid \Omega = \{HH,HT,TH,TT\}$

(b) Write each event as a subset of the sample space:
 Event *E*₁ ≡ Two heads occur
 Event *E*₂ ≡ A head & a tail occur

Event $E_3 \equiv$ First coin is tails

$$\begin{bmatrix} E_1 = \{(H, H)\} \end{bmatrix} \text{ OR } \begin{bmatrix} E_1 = \{HH\} \end{bmatrix}$$
$$\begin{bmatrix} E_2 = \{(H, T), (T, H)\} \end{bmatrix} \text{ OR } \begin{bmatrix} E_2 = \{HT, TH\} \end{bmatrix}$$
$$\begin{bmatrix} E_3 = \{(T, H), (T, T)\} \end{bmatrix} \text{ OR } \begin{bmatrix} E_3 = \{TH, TT\} \end{bmatrix}$$

Definition

Event *E* is **simple** if it contains exactly one outcome:

Event *E* is **compound** if it contains more than one outcome: $E = \{\omega_1, \ldots, \omega_k\}$

The empty set \emptyset is neither a simple nor compound event.

WEX 2-1-2: Two fair coins are flipped and then their top faces are observed. Then:

Sample Space $\Omega = \{HH, HT, TH, TT\}$

- $E_1 \equiv$ Two heads occur = {HH} \implies E_1 is simple event $E_2 \equiv$ A head & a tail occur = {HT, TH} \implies E_2 is compound event
- $E_3 \equiv$ First coin is tails = {TH, TT} \implies E_3 is compound event

 $E = \{\omega_1\}$

Events (Visually via a Venn Diagram)

E

Events (Visually via a Venn Diagram)

F

Union of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, their **union**, $E \cup F$, is the set of all outcomes in <u>*E* or F</u>.

$E \cup F$

Josh Engwer (TTU)

For this course (and most of mathematics/statistics), the English word "or" by itself always means **inclusive or**, never exclusive or.

Examples in English:

- Inclusive OR: "The car is compact or red" (or both compact and red)
- Exclusive OR: "I (either) drove to Austin or drove to Dallas" (but not both)

Examples in Math:

- Inclusive OR: x > 5 or x is divisible by 3 (or both)
- Exclusive OR: Either x > 5 or $x \le 5$ (but not both)

Intersection of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, their **intersection**, $E \cap F$, is the set of all outcomes in <u>*E*</u> and <u>*F*</u>.

Complement of an Event

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, the **complement** of E, E^c , is the set of all outcomes not in E.

Complement of an Event

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, the **complement** of F, F^c , is the set of all outcomes not in F.

Complement of a Union of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, event $(E \cup F)^c$ is the set of all outcomes <u>neither in *E* nor in *F*</u>.

$$(E \cup F)^c$$

Josh Engwer (TTU)

Unions, Intersections, Complements (Example)

WEX 2-1-3: Two fair coins are flipped and then their top faces are observed. Then:

Sample Space $\Omega = \{HH, HT, TH, TT\}$ Event $E_1 \equiv$ Two heads occur $= \{HH\}$ Event $E_2 \equiv$ A head & a tail occur = {HT, TH} Event $E_3 \equiv$ First coin is tails $= \{TH, TT\}$ $E_1 \cup E_2 \equiv$ (All outcomes in E_1 or E_2) $= \{HH, HT, TH\}$ (All outcomes in E_1 or E_3) $= \{HH, TH, TT\}$ $E_1 \cup E_3 \equiv$ (All outcomes in E_2 or E_3) $E_2 \cup E_3 \equiv$ = {HT, TH, TT} $E_1 \cap E_2 \equiv$ (All outcomes in E_1 and E_2) = $E_1 \cap E_3 \equiv$ (All outcomes in E_1 and E_3) Ø = $E_2 \cap E_3 \equiv$ (All outcomes in E_2 and E_3) $\{TH\}$ = $E_1^c \equiv$ (All outcomes not in E_1) $= \{HT, TH, TT\}$ $E_2^c \equiv$ (All outcomes not in E_2) $\{HH, TT\}$ = E_3^c \equiv (All outcomes not in E_3) = {*HH*, *HT*} $(E_1 \cup E_2)^c \equiv$ (All outcomes neither in E_1 nor in E_2) = $\{TT\}$ $(E_1 \cup E_3)^c \equiv$ = (All outcomes neither in E_1 nor in E_3) $\{HT\}$ $(E_2 \cup E_3)^c \equiv$ (All outcomes neither in E_2 nor in E_3) $\{HH\}$ =

Unions, Intersections, Complements (Properties)

Proposition

(Properties of Unions, Intersections and Complements of Events) Let $A, B, C \subseteq \Omega$ be events of some experiment. Then:

$$\begin{array}{ll} (S1) & (A^c)^c = A \\ (S2) & A \cup B = B \cup A \\ (S3) & A \cap B = B \cap A \\ (S4) & (A \cup B) \cup C = A \cup (B \cup C) \\ (S5) & (A \cap B) \cap C = A \cap (B \cap C) \\ (S6) & (A \cup B)^c = A^c \cap B^c \\ (S7) & (A \cap B)^c = A^c \cup B^c \\ (S8) & A \cup \emptyset = A, \ A \cap \emptyset = \emptyset \\ (S9) & \Omega^c = \emptyset, \ \emptyset^c = \Omega \\ (S10) & (A \cup B) \cap C = (A \cap C) \cup (B \cap C) \\ (S11) & (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \\ \end{array}$$

Complementing a Set twice is itself Commutativity of Unions Commutativity of Intersections Associativity of Intersections De Morgan's Law De Morgan's Law Unions/Intersections with Empty Set Sample Space & Empty Set Relation Intersection Distributes over Union Union Distributes over Intersection

PROOF: Use Venn Diagrams or take Intro to Proof. (MATH 3310)

Mutual Exclusivity of Two Events (Definition)

Definition

Events *E*, *F* are **mutually exclusive** if they have no outcomes in common:

 $E \cap F = \emptyset$

Events *E* & *F* in this case are sometimes called **disjoint** events.

Mutually Exclusive Events

Probability: Sets, Sample Spaces, Events

Mutual Exclusivity of Two Events (Definition)

Definition

Events *E*, *F* are **mutually exclusive** if they have no outcomes in common:

 $E \cap F = \emptyset$

Events *E* & *F* in this case are sometimes called **disjoint** events.

Not Mutually Exclusive

Sample Space $\Omega = \{HH, HT, TH, TT\}$

Event $E_1 \equiv$ Two heads occur = {HH} Event $E_2 \equiv$ A head & a tail occur = {HT, TH} Event $E_3 \equiv$ First coin is tails = {TH, TT}

> $E_1 \cap E_2 = \emptyset \implies E_1 \text{ and } E_2 \text{ are mutually exclusive}$ $E_1 \cap E_3 = \emptyset \implies E_1 \text{ and } E_3 \text{ are mutually exclusive}$ $E_2 \cap E_3 = \{TH\} \implies E_2 \text{ and } E_3 \text{ are mutually exclusive}$

Mutual Exclusivity of Three Events (Definition)

Mutual Exclusivity can be extended to three events:

Definition

Events *E*, *F*, *G* are **mutually exclusive** if they have no outcomes in common:

$$E \cap F = \emptyset$$
 and $E \cap G = \emptyset$ and $F \cap G = \emptyset$

Events *E*, *F*, *G* in this case are also called **pairwise disjoint** events.

QUESTION TO PONDER:

Why are mutually exclusive events E, F, G not defined to be $E \cap F \cap G = \emptyset$???

Mutual Exclusivity of Many Events (Definition)

Mutual Exclusivity can be extended to many events:

Definition

Events E_1, E_2, \ldots, E_n are **mutually exclusive** if they have no outcomes in common:

$$E_i \cap E_j = \emptyset$$
 for $i \neq j$

Events E_1, E_2, \ldots, E_n in this case are also called **pairwise disjoint** events.

QUESTION TO PONDER:

Why is the definition for mutual exclusivity <u>not</u> $E_1 \cap E_2 \cap \cdots \cap E_n = \emptyset$???

• Difference(s) in Terminology:

TEXTBOOK	SLIDES/OUTLINE	
TERMINOLOGY	TERMINOLOGY	
Null Event Ø	Empty Set Ø	

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	S	Ω
Complement of Event	A'	A^c

Fin.