Probability: Sets, Sample Spaces, Events

Engineering Statistics
Section 2.1

Josh Engwer

TTU
01 February 2016

The Need for Probability: Uncertainty in Processes

Life is full of processes whose outcome cannot be predicted ahead of time:

Definition

A random process is a process whose outcome cannot be predicted a priori.
Examples of random processes:
Gambling: Flipping a Coin, Games of Chance (Blackjack, Roulette, ...)

Meteorology:
Economics:
Social Sciences:
Biology:
Engineering:
Physics: Weather Systems, Path of a Tropical Cyclone Stock Prices, Demand for Oil Behaviour in People (e.g. fads) Behaviour of Infectious Disease Instrumentation Errors, Noise in Signals Entropy, Heisenberg's Uncertainty Principle

If we can't predict the outcome, what's the next best thing?
Use Probability to determine the likelihood of a particular outcome!

Definition

Probability is the quantitative study of uncertainty.

Sets \& Sequences (Definitions \& Examples)

Sets and sequences are among the most fundamental mathematical objects:

Definition

A set is a possibly infinite, unique, unordered list of elements.
A sequence is a possibly infinite, varying, arbitrary, ordered list of elements.
Sets are written as comma-separated lists enclosed by braces.
Sequences are written as comma-separated lists enclosed by parentheses.
Finite sequences can also be written as lists w/o commas and parentheses.

Set(s): $\quad\{1,2,3\},\{1,2,3,4, \cdots\}, \quad\{a, b, c\},\{a, b, c, d, \cdots\}$
Not Set(s): $\quad\{1,2,2\},\{1,1,1,4, \cdots\}, \quad\{a, a, c\},\{a, a, a, d, \cdots\}$

$$
(1,2,3),(1,2,2), \quad(a, b, c),(a, b, b),
$$

Sequence(s):

$$
\begin{array}{ll}
(1,2,3, \cdots), & (a, b, c, \cdots), \\
(1,2,2, \cdots) & (a, b, b, \cdots)
\end{array}
$$

A set can contain sets or sequences: $\{(1,2),\{a, b\},(a, c), b c,\{1,2\}\}$ Be careful with number sequences: $(1,2,3,4)=1234$ BUT $(12,34) \neq 1234$

Basic Terminology

Definition

(Experiments, Outcomes, Sample Spaces, Events)
A random process is a process whose outcome cannot be predicted a priori. An experiment is any observation of a random process.
The outcomes $\omega_{1}, \omega_{2}, \ldots$ of an experiment are the different possible results.
The sample space Ω of an experiment is the set of all possible outcomes.
An event E is a subset of the sample space: $\quad E \subseteq \Omega$
Ω is the upper-case Greek letter omega.
ω is the lower-case Greek letter omega.
REMARK: The empty set, \emptyset, is the event with no outcomes in it.
REMARK: The empty set, \emptyset, is always a subset of the sample space: $\emptyset \subseteq \Omega$

Games of Chance \& Fair Objects

Some experiments involve games of chance such as:

- Flipping coins
- Rolling dice (of any number of sides)
- Spinning a Roulette wheel

Quite often, the coins \& dice will be fair:

Definition

(Fair Coins \& Fair Dice)
A fair coin has an equal chance of either side showing up upon flipping.
A fair die has an equal chance of any of its sides showing up upon rolling.

GOOD NEWS:

Games of chance requiring a deck of cards (blackjack, poker, ...) will not be considered in this course.

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.
(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv \mathrm{~A}$ head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.

Let $H \equiv$ Heads AND $T \equiv$ Tails
(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv$ A head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.

Let $H \equiv$ Heads AND $T \equiv$ Tails

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\} \quad \text { OR } \quad \Omega=\{H H, H T, T H, T T\}
$$

(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv$ A head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.

Let $H \equiv$ Heads AND $T \equiv$ Tails

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\} \quad \text { OR } \quad \Omega=\{H H, H T, T H, T T\}
$$

(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv$ A head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

$$
E_{1}=\{(H, H)\} \quad \text { OR } E_{1}=\{H H\}
$$

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.

Let $H \equiv$ Heads AND $T \equiv$ Tails

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\} \quad \text { OR } \Omega=\{H H, H T, T H, T T\}
$$

(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv \mathrm{~A}$ head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

$$
\begin{aligned}
& E_{1}=\{(H, H)\} \\
& E_{2}=\{(H, T),(T, H)\} \text { OR } E_{1}=\{H H\} \\
& E_{2}=\{H T, T H\}
\end{aligned}
$$

Sample Spaces, Outcomes, Events (Example)

WEX 2-1-1: Two fair coins are flipped and then their top faces are observed.
(a) Determine the sample space Ω for the experiment.

Let $H \equiv$ Heads AND $T \equiv$ Tails

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\} \quad \text { OR } \Omega=\{H H, H T, T H, T T\}
$$

(b) Write each event as a subset of the sample space:

Event $E_{1} \equiv$ Two heads occur
Event $E_{2} \equiv$ A head \& a tail occur
Event $E_{3} \equiv$ First coin is tails

$$
\begin{array}{cc}
\quad E_{1}=\{(H, H)\} & \text { OR } E_{1}=\{H H\} \\
E_{2}=\{(H, T),(T, H)\} & \text { OR } E_{2}=\{H T, T H\} \\
E_{3}=\{(T, H),(T, T)\} & \text { OR } E_{3}=\{T H, T T\} \\
\hline
\end{array}
$$

Simple \& Compound Events

Definition

Event E is simple if it contains exactly one outcome: $\quad E=\left\{\omega_{1}\right\}$
Event E is compound if it contains more than one outcome: $E=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$
The empty set \emptyset is neither a simple nor compound event.

WEX 2-1-2: Two fair coins are flipped and then their top faces are observed. Then:
Sample Space $\Omega=\{H H, H T, T H, T T\}$

Events (Visually via a Venn Diagram)

E

Events (Visually via a Venn Diagram)

F

Union of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, their union, $E \cup F$, is the set of all outcomes in \underline{E} or F.

$$
E \cup F
$$

Inclusive OR versus Exclusive OR

For this course (and most of mathematics/statistics), the English word "or" by itself always means inclusive or, never exclusive or.

Examples in English:

- Inclusive OR: "The car is compact or red" (or both compact and red)
- Exclusive OR: "I (either) drove to Austin or drove to Dallas" (but not both)

Examples in Math:

- Inclusive OR: $x>5$ or x is divisible by 3 (or both)
- Exclusive OR: Either $x>5$ or $x \leq 5$ (but not both)

Intersection of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, their intersection, $E \cap F$, is the set of all outcomes in E and F.

$$
E \cap F
$$

Complement of an Event

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, the complement of E, E^{c}, is the set of all outcomes not in E.

Complement of an Event

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, the complement of F, F^{c}, is the set of all outcomes not in F.

F^{c}

Complement of a Union of Two Events

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then, event $(E \cup F)^{c}$ is the set of all outcomes neither in E nor in F.

$$
(E \cup F)^{c}
$$

Unions, Intersections, Complements (Example)

WEX 2-1-3: Two fair coins are flipped and then their top faces are observed. Then:
Sample Space $\Omega=\{H H, H T, T H, T T\}$
Event $E_{1} \equiv$ Two heads occur $=\{H H\}$
Event $E_{2} \equiv$ A head \& a tail occur $=\{H T, T H\}$
Event $E_{3} \equiv$ First coin is tails $\quad=\{T H, T T\}$

$E_{1} \cup E_{2}$	\equiv	$\left(\right.$ All outcomes in E_{1} or $\left.E_{2}\right)$	$=$	$\{H H, H T, T H\}$
$E_{1} \cup E_{3}$	\equiv	$\left(\right.$ All outcomes in E_{1} or $\left.E_{3}\right)$	$=$	$\{H H, T H, T T\}$
$E_{2} \cup E_{3}$	\equiv	(All outcomes in E_{2} or $\left.E_{3}\right)$	$=$	$\{H T, T H, T T\}$
$E_{1} \cap E_{2}$	\equiv	(All outcomes in E_{1} and $\left.E_{2}\right)$	$=$	\emptyset
$E_{1} \cap E_{3}$	\equiv	(All outcomes in E_{1} and $\left.E_{3}\right)$	$=$	\emptyset
$E_{2} \cap E_{3}$	\equiv	(All outcomes in E_{2} and $\left.E_{3}\right)$	$=$	$\{T H\}$
E_{1}^{c}	\equiv	(All outcomes not in $\left.E_{1}\right)$	$=$	$\{H T, T H, T T\}$
E_{2}^{c}	\equiv	(All outcomes not in $\left.E_{2}\right)$	$=$	$\{H H, T T\}$
E_{3}^{c}	\equiv	(All outcomes not in $\left.E_{3}\right)$	$=$	$\{H H, H T\}$
$\left(E_{1} \cup E_{2}\right)^{c}$	\equiv	(All outcomes neither in E_{1} nor in $\left.E_{2}\right)$	$=$	$\{T T\}$
$\left(E_{1} \cup E_{3}\right)^{c}$	\equiv	(All outcomes neither in E_{1} nor in $\left.E_{3}\right)$	$=$	$\{H T\}$
$\left(E_{2} \cup E_{3}\right)^{c}$	\equiv	(All outcomes neither in E_{2} nor in $\left.E_{3}\right)$	$=$	$\{H H\}$

Unions, Intersections, Complements (Properties)

Proposition

(Properties of Unions, Intersections and Complements of Events) Let $A, B, C \subseteq \Omega$ be events of some experiment. Then:
(S1) $\quad\left(A^{c}\right)^{c}=A$
(S2) $A \cup B=B \cup A$
(S3) $A \cap B=B \cap A$
(S4) $\quad(A \cup B) \cup C=A \cup(B \cup C)$
(S5) $\quad(A \cap B) \cap C=A \cap(B \cap C)$
(S6) $\quad(A \cup B)^{c}=A^{c} \cap B^{c}$
(S7) $\quad(A \cap B)^{c}=A^{c} \cup B^{c}$
(S8) $\quad A \cup \emptyset=A, A \cap \emptyset=\emptyset$
(S9) $\quad \Omega^{c}=\emptyset, \emptyset^{c}=\Omega$
(S10) $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$
(S11) $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$

Complementing a Set twice is itself Commutativity of Unions
Commutativity of Intersections
Associativity of Unions
Associativity of Intersections
De Morgan's Law
De Morgan's Law
Unions/Intersections with Empty Set Sample Space \& Empty Set Relation Intersection Distributes over Union Union Distributes over Intersection

PROOF: Use Venn Diagrams or take Intro to Proof. (MATH 3310)

Mutual Exclusivity of Two Events (Definition)

Definition

Events E, F are mutually exclusive if they have no outcomes in common:

$$
E \cap F=\emptyset
$$

Events $E \& F$ in this case are sometimes called disjoint events.

Mutually Exclusive Events

Mutual Exclusivity of Two Events (Definition)

Definition

Events E, F are mutually exclusive if they have no outcomes in common:

$$
E \cap F=\emptyset
$$

Events $E \& F$ in this case are sometimes called disjoint events.

Not Mutually Exclusive

Mutual Exclusivity of Two Events (Example)

WEX 2-1-4: Two fair coins are flipped and then their top faces are observed.
Then:
Sample Space $\Omega=\{H H, H T, T H, T T\}$
Event $E_{1} \equiv$ Two heads occur $=\{H H\}$
Event $E_{2} \equiv$ A head \& a tail occur $=\{H T, T H\}$
Event $E_{3} \equiv$ First coin is tails $\quad=\{T H, T T\}$

Mutual Exclusivity of Three Events (Definition)

Mutual Exclusivity can be extended to three events:

Definition

Events E, F, G are mutually exclusive if they have no outcomes in common:

$$
E \cap F=\emptyset \text { and } E \cap G=\emptyset \text { and } F \cap G=\emptyset
$$

Events E, F, G in this case are also called pairwise disjoint events.

QUESTION TO PONDER:

Why are mutually exclusive events E, F, G not defined to be $E \cap F \cap G=\emptyset$???

Mutual Exclusivity of Many Events (Definition)

Mutual Exclusivity can be extended to many events:

Definition

Events $E_{1}, E_{2}, \ldots, E_{n}$ are mutually exclusive if they have no outcomes in common:

$$
E_{i} \cap E_{j}=\emptyset \text { for } i \neq j
$$

Events $E_{1}, E_{2}, \ldots, E_{n}$ in this case are also called pairwise disjoint events.

QUESTION TO PONDER:

Why is the definition for mutual exclusivity not $E_{1} \cap E_{2} \cap \cdots \cap E_{n}=\emptyset$???

Textbook Logistics for Section 2.1

- Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event \emptyset	Empty Set \emptyset

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	\mathcal{S}	Ω
Complement of Event	A^{\prime}	A^{c}

Fin.

