Probability: Axioms, Properties, Interpretations

Engineering Statistics

Section 2.2

Josh Engwer

TTU

03 February 2016

Chains of Unions, Chains of Intersections

Just as a chain of sums can be written compactly...

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n} \quad \sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots
$$

...a chain of unions can similarly be compactly written...

$$
\bigcup_{k=1}^{n} A_{k}=A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n} \quad \quad \bigcup_{k=1}^{\infty} A_{k}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots
$$

...as can a chain of intersections...

$$
\bigcap_{k=1}^{n} A_{k}=A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}
$$

$$
\bigcap_{k=1}^{\infty} A_{k}=A_{1} \cap A_{2} \cap A_{3} \cap \cdots
$$

...as can a chain of products.

$$
\prod_{k=1}^{n} a_{k}=a_{1} a_{2} \cdots a_{n-1} a_{n} \quad \prod_{k=1}^{\infty} a_{k}=a_{1} a_{2} a_{3} \cdots
$$

Probability Axioms

The probability of an event E, denoted $\mathbb{P}(E)$, is a real number.
It turns out only 3 axioms are needed to ensure probability behaves properly:

Proposition

(Probability Axioms)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment.
Let $E_{1}, E_{2}, E_{3}, \ldots$ be an infinite collection of pairwise disjoint events. Then:
(A1) $\quad \mathbb{P}(E) \geq 0 \quad$ Probablity of an Event is Non-Negative
(A2) $\quad \mathbb{P}(\Omega)=1 \quad$ Probability of Sample Space is always One
(A3) $\mathbb{P}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(E_{k}\right) \quad$ Probabilty of Infinite Disjoint Union is a Sum

Basic Properties of Probability

The 3 probability axioms can be used to build more useful properties:

Proposition

(Basic Probability Properties)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment.
Let $E_{1}, E_{2}, E_{3}, \ldots$ be an infinite collection of pairwise disjoint events. Then:
$(P 1) \quad \mathbb{P}(\emptyset)=0 \quad$ Probability of Empty Set is always Zero
(P2) $\mathbb{P}\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mathbb{P}\left(E_{k}\right) \quad$ Probabilty of Finite Disjoint Union is a Sum

Basic Properties of Probability

The 3 probability axioms can be used to build more useful properties:

Proposition

(Basic Probability Properties)

Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment.
Let $E_{1}, E_{2}, \ldots, E_{n}$ be a finite collection of pairwise disjoint events. Then:
(P1) $\quad \mathbb{P}(\emptyset)=0 \quad$ Probability of Empty Set is always Zero
(P2) $\mathbb{P}\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mathbb{P}\left(E_{k}\right) \quad$ Probabilty of Finite Disjoint Union is a Sum

PROOF: (P1) Let $E_{1}=E_{2}=E_{3}=\cdots=\emptyset$. Then $\bigcup_{k=1}^{\infty} E_{k}=\emptyset$
Moreover, the events are pairwise disjoint since $E_{i} \cap E_{j}=\emptyset \cap \emptyset \stackrel{S 8}{=} \emptyset$ for $i \neq j$
$\therefore \mathbb{P}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\mathbb{P}(\emptyset) \xlongequal{A 3} \sum_{k=1}^{\infty} \mathbb{P}\left(E_{k}\right)=\mathbb{P}(\emptyset) \Longrightarrow \sum_{k=1}^{\infty} \mathbb{P}(\emptyset)=\mathbb{P}(\emptyset)$
$\Longrightarrow \mathbb{P}(\emptyset)=0$ (as it's the only way for LHS \& RHS to equal each other) \square

Basic Properties of Probability

The 3 probability axioms can be used to build more useful properties:

Proposition

(Basic Probability Properties)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment.
Let $E_{1}, E_{2}, E_{3}, \ldots$ be an infinite collection of pairwise disjoint events. Then:
$(P 1) \quad \mathbb{P}(\emptyset)=0 \quad$ Probability of Empty Set is always Zero
(P2) $\mathbb{P}\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mathbb{P}\left(E_{k}\right) \quad$ Probabilty of Finite Disjoint Union is a Sum

PROOF: (P2) Let $E_{n+1}=E_{n+2}=E_{n+3}=\cdots=\emptyset$
Then $\bigcup_{k=1}^{\infty} E_{k}=\left(\bigcup_{k=1}^{n} E_{k}\right) \cup\left(\bigcup_{k=n+1}^{\infty} \emptyset\right) \stackrel{S 8}{=}\left(\bigcup_{k=1}^{n} E_{k}\right) \cup \emptyset \stackrel{S 8}{=} \bigcup_{k=1}^{n} E_{k}$
Finally, apply (A3) and then (P1) \square

More Properties of Probability

Proposition

(More Probability Properties)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment. Then:
(P3) $\quad \mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E) \quad$ Probability of Complement
(P4) $\mathbb{P}(E) \leq 1 \quad$ Probability is never greater than One

More Properties of Probability

Proposition

(More Probability Properties)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment. Then:
(P3) $\quad \mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E) \quad$ Probability of Complement
(P4) $\mathbb{P}(E) \leq 1 \quad$ Probability is never greater than One

PROOF:

(P3) Note that $E \cup E^{c}=\Omega$ and $E \cap E^{c}=\emptyset \Longrightarrow E, E^{c}$ are disjoint events.
Then $\mathbb{P}\left(E \cup E^{c}\right)=\mathbb{P}(\Omega) \xlongequal{P 2} \mathbb{P}(E)+\mathbb{P}\left(E^{c}\right)=\mathbb{P}(\Omega) \xlongequal{A 2} \mathbb{P}(E)+\mathbb{P}\left(E^{c}\right)=1$
$\therefore \mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E) \quad \square$

More Properties of Probability

Proposition

(More Probability Properties)
Let $E \subseteq \Omega$ be an event from sample space Ω of an experiment. Then:

$$
\begin{array}{lll}
(P 3) & \mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E) & \text { Probability of Complement } \\
(P 4) & \mathbb{P}(E) \leq 1 & \text { Probability is never greater than One }
\end{array}
$$

PROOF:

$(P 4) \quad \mathrm{By}(P 3), \quad \mathbb{P}(E)+\mathbb{P}\left(E^{c}\right)=1 \xlongequal{A 1} \mathbb{P}(E) \leq 1 \quad \square$

Probability of a Union of Two Events

Not Mutually Exclusive

Proposition

(Probability of a Union of Two Events)
Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then:

$$
\text { (P5) } \quad \mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F) \quad \text { Probabilty of Union }
$$

Probability of a Union of Two Events

Not Mutually Exclusive

Proposition

(Probability of a Union of Two Events)
Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment. Then:

$$
\text { (P5) } \quad \mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F) \quad \text { Probabilty of Union }
$$

PROOF: The Venn Diagram indicates that $\mathbb{P}(E)+\mathbb{P}(F)$ counts $\mathbb{P}(E \cap F)$ twice! See the textbook for lower-level proof.

Principle of Inclusion-Exclusion

Proposition

(Principle of Inclusion-Exclusion)
Let $E, F, G \subseteq \Omega$ be three events from sample space Ω of an experiment. Then:

$$
\mathbb{P}(E \cup F \cup G)=\mathbb{P}(E)+\mathbb{P}(F)+\mathbb{P}(G)-\mathbb{P}(E \cap F)-\mathbb{P}(E \cap G)-\mathbb{P}(F \cap G)+\mathbb{P}(E \cap F \cap G)
$$

Deep Interpretation of Probability

The axioms \& properties do not give a complete interpretation of probability!! The most intuitive interpretation is to treat probability as a relative frequency:

Deep Interpretation of Probability

The axioms \& properties do not give a complete interpretation of probability!! The most intuitive interpretation is to treat probability as a relative frequency:

Simulation of 10000 Fair Coin Tosses

Interpretation of Probability

Definition

(Interpretation of Probability)
The probability of an outcome in a sample space is the likelihood of the outcome, which is a number between 0 and 1 inclusive.
The probability of an event E, denoted $\mathbb{P}(E)$, is the sum of the probabilities of the outcomes that comprise E.

Interpretation of Probability:

0		$\mathbb{P}(E)$	$=$	0	\Longrightarrow	Event E is impossible
	$<$	$\mathbb{P}(E)$	$<$	0.50	\Longrightarrow	Event E is not likely to occur
		$\mathbb{P}(E)$	$=$	0.50	\Longrightarrow	Event E has 50-50 chance of occurrin
0.50	$<$	$\mathbb{P}(E)$	<	1	\Longrightarrow	Event E is likely to occur
		$\mathbb{P}(E)$	$=$	1	\Longrightarrow	Event E is certain to occur

Interpretation of Probability

Definition

(Interpretation of Probability)
The probability of an outcome in a sample space is the likelihood of the outcome, which is a number between 0 and 1 inclusive.
The probability of an event E, denoted $\mathbb{P}(E)$, is the sum of the probabilities of the outcomes that comprise E.

Examples of Probability:

- "There's a 30\% chance of snow tomorrow." $\quad[\mathbb{P}($ Snow tomorrow $)=0.30]$
- "25\% of adults get seven hours of sleep." $\quad[\mathbb{P}(7$ hrs of sleep $)=0.25]$
- "All dogs play fetch."
- "There's a 1 in 1000 chance of winning."
- "None of my cats catch mice."
$[\mathbb{P}($ Playing fetch $)=1]$
$\left[\mathbb{P}(\right.$ Winning $\left.)=\frac{1}{1000}\right]$
$[\mathbb{P}($ Catch mice $)=0]$

Measure of a Set (Definition)

Definition

(Measure of a Set)
The measure of a countable set is $|E|:=(\#$ of elements in E)
The measure of a 1D set is $|E|:=$ (Length of curve E)
The measure of a 2D set is $|E|:=($ Area of region E)
The measure of a 3D set is $|E|:=($ Volume of solid $E)$
The measure of the empty set is defined to be zero: $|\emptyset|:=0$

Measure of a Countable Set (Example)

Definition

(Measure of a Set)
The measure of a countable set is $|E|:=(\#$ of elements in E)
The measure of a 1D set is $|E|:=($ Length of curve E)
The measure of a 2D set is $|E|:=($ Area of region E)
The measure of a 3D set is $|E|:=($ Volume of solid $E)$
The measure of the empty set is defined to be zero: $|\emptyset|:=0$
Example: Let $S=\{$ Heads, Tails $\}$.
Then, $|S|=(\#$ of elements of $S)=2$

Measure of a 1D Set (Example)

Definition

(Measure of a Set)
The measure of a countable set is $|E|:=(\#$ of elements in E)
The measure of a 1D set is $|E|:=($ Length of curve E)
The measure of a 2D set is $|E|:=($ Area of region E)
The measure of a 3D set is $|E|:=($ Volume of solid $E)$
The measure of the empty set is defined to be zero: $|\emptyset|:=0$
Example: Let ℓ be a line segment with length 13 .
Then, $|\ell|=($ Length of $\ell)=13$

Measure of a 2D Set (Example)

Definition

(Measure of a Set)
The measure of a countable set is $|E|:=(\#$ of elements in E)
The measure of a 1D set is $|E|:=($ Length of curve E)
The measure of a 2D set is $|E|:=($ Area of region E)
The measure of a 3D set is $|E|:=($ Volume of solid $E)$
The measure of the empty set is defined to be zero: $|\emptyset|:=0$
Example: Let R be a rectangle with length 2 and width 3.
Then, $|R|=($ Area of $R)=($ Length $) \times($ Width $)=2 \times 3=6$

Measure of a 3D Set (Example)

Definition

(Measure of a Set)
The measure of a countable set is $|E|:=(\#$ of elements in E)
The measure of a 1D set is $|E|:=($ Length of curve E)
The measure of a 2D set is $|E|:=($ Area of region E)
The measure of a 3D set is $|E|:=($ Volume of solid $E)$
The measure of the empty set is defined to be zero: $|\emptyset|:=0$
Example: Let C be a cube of length 4 .
Then, $|C|=($ Volume of $C)=(\text { Length })^{3}=4^{3}=64$

BE CAREFUL WITH THE VERTICAL BARS!!!

The vertical bars $|\cdot|$ are heavily overloaded in mathematics:

MATHEMATICAL OBJECT	TYPICAL EXPRESSION	MEANING OF VERTICAL BARS	
Scalar	$\|a\|=\|-3\|$		
Vector	$\|\|\mathbf{v}\|\|=\\|\left[\begin{array}{c}1 \\ 2\end{array}\right]$	Absolute Value of a	
Matrix	$\left.\|A\|=\left\lvert\, \begin{array}{cc}1 & 2 \\ 3 & 4\end{array}\right.\right]$	Derm of \mathbf{v}	
Set	$\|E\|=\|\{1,2,3,4\}\|$	Measure of E	

For this course, vectors and matrices will not be considered, so just be mindful of the difference between the absolute value of a scalar \& measure of a set.

Probability: Equally Likely Outcomes

Very often, all the outcomes of an experiment are equally likely to occur:

Definition

(Probability of an Event)
Let Ω be the sample space of an experiment with equally likely outcomes. Let E be an event of the experiment.
Then the probability of event E occurring is defined as: $\mathbb{P}(E)=\frac{|E|}{|\Omega|}$
i.e. The probability is the proportion of outcomes that comprise the event.

REMARKS:

Often it's impractical to list every outcome of a sample space Ω or event E. When computing probability, only the measures of $E \& \Omega$ are needed.
Fair coins \& fair dice always result in equally likely outcomes.

Probability: Equally Likely Outcomes (Example)

Consider the experiment of flipping a coin once with (H)eads and (T)ails. Let event $E \equiv$ "Heads". Then, sample space $\Omega=\{H, T\}$.

Simulation of 10000 Fair Coin Tosses

Then: $\mathbb{P}($ Heads $) \equiv \mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{|\{H\}|}{|\{H, T\}|}=\frac{1}{2}=0.5$

Textbook Logistics for Section 2.2

- Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event \emptyset	Empty Set \emptyset
Number of Outcomes in E	Measure of E

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	\mathcal{S}	Ω
Complement of Event	A^{\prime}	A^{c}
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Measure of Event	$N(A)$	$\|A\|$

Fin.

