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PART I

PART I: CONDITIONAL PROBABILITY
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Conditional Probability (Definition)

The occurrence of one event can affect the probability of another event:

Definition
(Conditional Probability)

Let events E,F be events in the sample space Ω of an experiment.

Then:

The conditional probability of F given E, denoted P(F|E), is the
probability of event F assuming that event E has already occurred.
The conditional probability of E given F, denoted P(E|F), is the
probability of event E assuming that event F has already occurred.

WARNING: Order matters: in general, P(F|E) 6= P(E|F)
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Conditional Probability

But the previous definition is too crude to use.
How does conditional probability relate to ordinary probability?

Proposition
(Conditional Probability)

Let events E,F be events in the sample space Ω such that |E| > 0.

Then:

P(If E then F) = P(F given E) = P(F|E) :=
|E ∩ F|
|E|

WARNING: Order matters: in general, P(F|E) 6= P(E|F)
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Conditional Probability

But the previous definition is too crude to use.
How does conditional probability relate to ordinary probability?

Proposition
(Conditional Probability)

Let events E,F be events in the sample space Ω such that P(E) > 0.

Then:

P(If E then F) = P(F given E) = P(F|E) :=
P(E ∩ F)

P(E)

WARNING: Order matters: in general, P(F|E) 6= P(E|F)

PROOF:

P(F|E) =
|E ∩ F|
|E|

=
|E ∩ F|/|Ω|
|E|/|Ω|

=
|E ∩ F|
|Ω|

÷ |E|
|Ω|

= P(E∩F)÷P(E) =
P(E ∩ F)

P(E)
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
Let event E ≡ (Coin shows tails) = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
Let event F ≡ (Die shows 5) = {(H, 5), (T, 5)}
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
Let event E ≡ (Coin shows tails) = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
Let event F ≡ (Die shows 5) = {(H, 5), (T, 5)}
Then E ∩ F = {(T, 5)}
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
Let event E ≡ (Coin shows tails) = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
Let event F ≡ (Die shows 5) = {(H, 5), (T, 5)}
Then E ∩ F = {(T, 5)}

P(E) =
|E|
|Ω|

=
6

12
=

1
2

, P(F) =
|F|
|Ω|

=
2
12

=
1
6

, P(E ∩ F) =
|E ∩ F|
|Ω|

=
1

12
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
Let event E ≡ (Coin shows tails) = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
Let event F ≡ (Die shows 5) = {(H, 5), (T, 5)}
Then E ∩ F = {(T, 5)}

P(E) =
|E|
|Ω|

=
6

12
=

1
2

, P(F) =
|F|
|Ω|

=
2
12

=
1
6

, P(E ∩ F) =
|E ∩ F|
|Ω|

=
1

12

(a) P(E given F) = P(E|F) =
P(E ∩ F)

P(F)
=

1/12
1/6

=
1

12
÷ 1

6
=

1
12
× 6

1
=

1
2
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Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5.
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space Ω =

{
(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)

}
Let event E ≡ (Coin shows tails) = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
Let event F ≡ (Die shows 5) = {(H, 5), (T, 5)}
Then E ∩ F = {(T, 5)}

P(E) =
|E|
|Ω|

=
6

12
=

1
2

, P(F) =
|F|
|Ω|

=
2
12

=
1
6

, P(E ∩ F) =
|E ∩ F|
|Ω|

=
1

12

(a) P(E given F) = P(E|F) =
P(E ∩ F)

P(F)
=

1/12
1/6

=
1

12
÷ 1

6
=

1
12
× 6

1
=

1
2

(b) P(If E then F) = P(F|E) =
P(E ∩ F)

P(E)
=

1/12
1/2

=
1

12
÷ 1

2
=

1
12
× 2

1
=

1
6
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Intersection of Events (Alternative Formula)

The intersection of two events can found using conditional probability:

Proposition
(Intersection of Two Events)

Let events E,F be events in the sample space Ω of an experiment.

Then:

P(E ∩ F) = P(E) · P(F|E)

or equivalently

P(E ∩ F) = P(F) · P(E|F)

PROOF: Solve P(F|E) =
P(E ∩ F)

P(E)
or P(E|F) =

P(E ∩ F)

P(F)
for P(E∩F).
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PART II

PART II: PARTITIONS OF SAMPLE SPACE

LAW OF TOTAL PROBABILITY, BAYES’ THEOREM
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Partition of the Sample Space

Definition
Events E1,E2, . . . ,Ek ⊆ Ω partition sample space Ω if:

E1,E2, . . . ,Ek are pairwise disjoint AND
k⋃

i=1

Ei = Ω

Think of sample space as a puzzle & the partitioning events as puzzle pieces.

Events E1,E2,E3,E4 partition sample space Ω.
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Law of Total Probability (LTP)

Theorem
(Law of Total Probability)

Let E1, . . . ,Ek partition sample space Ω. Then P(F) =

k∑
i=1

P(F|Ei) · P(Ei)

Events E1,E2,E3,E4 partition sample space Ω.
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Law of Total Probability (LTP)

Theorem
(Law of Total Probability)

Let E1, . . . ,Ek partition sample space Ω. Then P(F) =

k∑
i=1

P(F|Ei) · P(Ei)

PROOF: Observe that events F ∩ E1,F ∩ E2, . . . ,F ∩ Ek are pairwise disjoint
since events E1,E2, . . . ,Ek are pairwise disjoint.
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Law of Total Probability (LTP)

Theorem
(Law of Total Probability)

Let E1, . . . ,Ek partition sample space Ω. Then P(F) =

k∑
i=1

P(F|Ei) · P(Ei)

PROOF: Then, P(F) =
∑k

i=1 P(F ∩ Ei) =
∑k

i=1 P(F|Ei) · P(Ei)
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Bayes’ Theorem

Theorem
(Bayes’ Theorem)

Let events E1, . . . ,Ek ⊆ Ω partition sample space Ω. Then

P(Ej|F) =
P(F|Ej) · P(Ej)

k∑
i=1

P(F|Ei) · P(Ei)

for j = 1, 2, . . . , k

PROOF: P(Ej|F) =
P(F ∩ Ej)

P(F)
=

P(F|Ej) · P(Ej)

P(F)

LTP
=

P(F|Ej) · P(Ej)∑k
i=1 P(F|Ei) · P(Ei)
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PART III

PART III: PROBABILITIY TREES & JOINT PROBABILITY TABLES
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Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:
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Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events F1,F2,F3 must partition the sample space Ω.
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Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events E1,E2,E3 must partition the sample space Ω.

Josh Engwer (TTU) Probability: Conditioning, Bayes’ Theorem 08 February 2016 23 / 29



2-Stage Experiments & 2-Way Joint Probability Tables

2-stage experiments can be summarized using 2-way joint probability table:

F Fc TOTAL
E P(E ∩ F) P(E ∩ Fc) P(E)
Ec P(Ec ∩ F) P(Ec ∩ Fc) P(Ec)

TOTAL P(F) P(Fc) (DON’T CARE)

F1 F2 F2 TOTAL
E1 P(E1 ∩ F1) P(E1 ∩ F2) P(E1 ∩ F3) P(E1)
E2 P(E2 ∩ F1) P(E2 ∩ F2) P(E2 ∩ F3) P(E2)
E3 P(E3 ∩ F1) P(E3 ∩ F2) P(E3 ∩ F3) P(E3)

TOTAL P(F1) P(F2) P(F3) (DON’T CARE)

Here, events E1,E2,E3 must partition sample space Ω.
Here, events F1,F2,F3 must partition sample space Ω.
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3-Stage Experiments & 3-Way Joint Probability Tables

3-stage experiments can be summarized via 3-way joint probability tables:

E G Gc TOTAL
F P(E ∩ F ∩ G) P(E ∩ F ∩ Gc) P(E ∩ F)
Fc P(E ∩ Fc ∩ G) P(E ∩ Fc ∩ Gc) P(E ∩ Fc)

TOTAL P(E ∩ G) P(E ∩ Gc) (DON’T CARE)

Ec G Gc TOTAL
F P(Ec ∩ F ∩ G) P(Ec ∩ F ∩ Gc) P(Ec ∩ F)
Fc P(Ec ∩ Fc ∩ G) P(Ec ∩ Fc ∩ Gc) P(Ec ∩ Fc)

TOTAL P(Ec ∩ G) P(Ec ∩ Gc) (DON’T CARE)

Josh Engwer (TTU) Probability: Conditioning, Bayes’ Theorem 08 February 2016 25 / 29



3-Stage Experiments & 3-Way Joint Probability Tables

E1 G1 G2 G3 TOTAL
F1 P(E1 ∩ F1 ∩ G1) P(E1 ∩ F1 ∩ G2) P(E1 ∩ F1 ∩ G3) P(E1 ∩ F1)
F2 P(E1 ∩ F2 ∩ G1) P(E1 ∩ F2 ∩ G2) P(E1 ∩ F2 ∩ G3) P(E1 ∩ F2)
F3 P(E1 ∩ F3 ∩ G1) P(E1 ∩ F3 ∩ G2) P(E1 ∩ F3 ∩ G3) P(E1 ∩ F3)

TOTAL P(E1 ∩ G1) P(E1 ∩ G2) P(E1 ∩ G3) (DON’T CARE)

E2 G1 G2 G3 TOTAL
F1 P(E2 ∩ F1 ∩ G1) P(E2 ∩ F1 ∩ G2) P(E2 ∩ F1 ∩ G3) P(E2 ∩ F1)
F2 P(E2 ∩ F2 ∩ G1) P(E2 ∩ F2 ∩ G2) P(E2 ∩ F2 ∩ G3) P(E2 ∩ F2)
F3 P(E2 ∩ F3 ∩ G1) P(E2 ∩ F3 ∩ G2) P(E2 ∩ F3 ∩ G3) P(E2 ∩ F3)

TOTAL P(E2 ∩ G1) P(E2 ∩ G2) P(E2 ∩ G3) (DON’T CARE)

E3 G1 G2 G3 TOTAL
F1 P(E3 ∩ F1 ∩ G1) P(E3 ∩ F1 ∩ G2) P(E3 ∩ F1 ∩ G3) P(E3 ∩ F1)
F2 P(E3 ∩ F2 ∩ G1) P(E3 ∩ F2 ∩ G2) P(E3 ∩ F2 ∩ G3) P(E3 ∩ F2)
F3 P(E3 ∩ F3 ∩ G1) P(E3 ∩ F3 ∩ G2) P(E3 ∩ F3 ∩ G3) P(E3 ∩ F3)

TOTAL P(E3 ∩ G1) P(E3 ∩ G2) P(E3 ∩ G3) (DON’T CARE)

Events E1,E2,E3 must partition Ω. Ditto for F1,F2,F3. Ditto for G1,G2,G3.
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Some Loose Guidelines to avoid Dead-Ends

How does one choose among using measures, probability trees, and joint
probability tables???

GIVEN SITUATION METHOD TO USE
Small Sample Space and its Outcomes P(E|F) = |E∩F|

|F|

Many Ordinary Probabilities P(E|F) = P(E∩F)
P(F)

Many Conditional Probabilities Probability Tree
Many Intersection Probabilities Joint Probability Table

NOTE: Using set operation properties may be necessary.

NOTE: Constructing a Venn Diagram may be helpful.

NOTE: Using the Principle of Inclusion-Exclusion may be helpful/necessary.
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Textbook Logistics for Section 2.4

Difference(s) in Terminology:

TEXTBOOK
TERMINOLOGY

SLIDES/OUTLINE
TERMINOLOGY

Null Event ∅ Empty Set ∅
Number of Outcomes in E Measure of E

Difference(s) in Notation:

CONCEPT
TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Sample Space S Ω

Complement of Event A′ Ac

Probability of Event P(A) P(A)

Measure of Event N(A) |A|
k-Permutations of n-element Set Pk,n Pn

k

Conditional Probability P(A|B) P(A|B)
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Fin

Fin.
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