Probability: Conditioning, Bayes' Theorem Engineering Statistics Section 2.4

Josh Engwer

TTU

08 February 2016

Josh Engwer (TTU)

Probability: Conditioning, Bayes' Theorem

PART I: CONDITIONAL PROBABILITY

The occurrence of one event can affect the probability of another event:

Definition (Conditional Probability) Let events *E*, *F* be events in the sample space Ω of an experiment. Then: The conditional probability of *F* given *E*, denoted P(*F*|*E*), is the probability of event *F* assuming that event *E* has already occurred. The conditional probability of *E* given *F*, denoted P(*E*|*F*), is the probability of event *E* assuming that event *F* has already occurred.

<u>WARNING</u>: **Order matters**: in general, $\mathbb{P}(F|E) \neq \mathbb{P}(E|F)$

But the previous definition is too crude to use. How does conditional probability relate to ordinary probability?

Proposition

(Conditional Probability)

Let events E, F be events in the sample space Ω such that |E| > 0. Then:

$$\mathbb{P}(\text{If } E \text{ then } F) = \mathbb{P}(F \text{ given } E) = \mathbb{P}(F|E) := \frac{|E \cap F|}{|E|}$$

<u>WARNING</u>: **Order matters**: in general, $\mathbb{P}(F|E) \neq \mathbb{P}(E|F)$

But the previous definition is too crude to use. How does conditional probability relate to ordinary probability?

Proposition

(Conditional Probability)

Let events *E*, *F* be events in the sample space Ω such that $\mathbb{P}(E) > 0$. Then:

$$\mathbb{P}(\text{If } E \text{ then } F) = \mathbb{P}(F \text{ given } E) = \mathbb{P}(F|E) := \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$$

<u>WARNING</u>: Order matters: in general, $\mathbb{P}(F|E) \neq \mathbb{P}(E|F)$

PROOF:

$$\mathbb{P}(F|E) = \frac{|E \cap F|}{|E|} = \frac{|E \cap F|/|\Omega|}{|E|/|\Omega|} = \frac{|E \cap F|}{|\Omega|} \div \frac{|E|}{|\Omega|} = \mathbb{P}(E \cap F) \div \mathbb{P}(E) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$$

Sample space
$$\Omega = \left\{ \begin{array}{c} (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), \\ (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \end{array} \right\}$$

Sample space
$$\Omega = \left\{ \begin{array}{c} (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), \\ (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \end{array} \right\}$$

Let event $E \equiv (\text{Coin shows tails}) = \{(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}$
Let event $F \equiv (\text{Die shows 5}) = \{(H,5), (T,5)\}$

Sample space
$$\Omega = \begin{cases} (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), \\ (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6) \end{cases}$$

Let event $E \equiv (\text{Coin shows tails}) = \{(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$
Let event $F \equiv (\text{Die shows 5}) = \{(H, 5), (T, 5)\}$
Then $E \cap F = \{(T, 5)\}$

Sample space
$$\Omega = \left\{ \begin{array}{c} (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), \\ (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \end{array} \right\}$$

Let event $E \equiv (\text{Coin shows tails}) = \{(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$ Let event $F \equiv (\text{Die shows 5}) = \{(H, 5), (T, 5)\}$

Then
$$E \cap F = \{(T,5)\}$$

 $\mathbb{P}(E) = \frac{|E|}{|\Omega|} = \frac{6}{12} = \frac{1}{2}, \quad \mathbb{P}(F) = \frac{|F|}{|\Omega|} = \frac{2}{12} = \frac{1}{6}, \quad \mathbb{P}(E \cap F) = \frac{|E \cap F|}{|\Omega|} = \frac{1}{12}$

Sample space
$$\Omega = \left\{ \begin{array}{c} (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), \\ (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \end{array} \right\}$$

Let event $E \equiv (\text{Coin shows tails}) = \{(T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \}$
Let event $F \equiv (\text{Die shows 5}) = \{(H,5), (T,5)\}$

Then $E \cap F = \{(T, 5)\}$ $\mathbb{P}(E) = \frac{|E|}{|\Omega|} = \frac{6}{12} = \frac{1}{2}, \quad \mathbb{P}(F) = \frac{|F|}{|\Omega|} = \frac{2}{12} = \frac{1}{6}, \quad \mathbb{P}(E \cap F) = \frac{|E \cap F|}{|\Omega|} = \frac{1}{12}$ (a) $\mathbb{P}(E \text{ given } F) = \mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} = \frac{1/12}{1/6} = \frac{1}{12} \div \frac{1}{6} = \frac{1}{12} \times \frac{6}{1} = \boxed{\frac{1}{2}}$

}

Conditional Probability (Example)

Sample space
$$\Omega = \begin{cases} (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), \\ (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6) \end{cases}$$

Let event $E \equiv (\text{Coin shows tails}) = \{(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$
Let event $F \equiv (\text{Die shows 5}) = \{(H, 5), (T, 5)\}$
Then $E \cap F = \{(T, 5)\}$
 $\mathbb{P}(E) = \frac{|E|}{|\Omega|} = \frac{6}{12} = \frac{1}{2}, \quad \mathbb{P}(F) = \frac{|F|}{|\Omega|} = \frac{2}{12} = \frac{1}{6}, \quad \mathbb{P}(E \cap F) = \frac{|E \cap F|}{|\Omega|} = \frac{1}{12}$
(a) $\mathbb{P}(E \text{ given } F) = \mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} = \frac{1/12}{1/6} = \frac{1}{12} \div \frac{1}{6} = \frac{1}{12} \times \frac{6}{1} = \frac{1}{2}$
(b) $\mathbb{P}(\text{If } E \text{ then } F) = \mathbb{P}(F|E) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)} = \frac{1/12}{1/2} = \frac{1}{12} \div \frac{1}{2} = \frac{1}{12} \times \frac{2}{1} = \frac{1}{6}$

Intersection of Events (Alternative Formula)

The intersection of two events can found using conditional probability:

Proposition

(Intersection of Two Events)

Let events E, F be events in the sample space Ω of an experiment. Then:

 $\mathbb{P}(E \cap F) = \mathbb{P}(E) \cdot \mathbb{P}(F|E)$

or equivalently

$$\mathbb{P}(E \cap F) = \mathbb{P}(F) \cdot \mathbb{P}(E|F)$$

$$\underline{\mathsf{PROOF:}} \quad \mathsf{Solve} \ \mathbb{P}(F|E) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)} \ \text{ or } \ \mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} \ \text{for } \ \mathbb{P}(E \cap F). \quad \Box$$

PART II: PARTITIONS OF SAMPLE SPACE LAW OF TOTAL PROBABILITY, BAYES' THEOREM

Partition of the Sample Space

Definition

Events $E_1, E_2, \ldots, E_k \subseteq \Omega$ partition sample space Ω if:

$$E_1, E_2, \dots, E_k$$
 are pairwise disjoint AND $\bigcup_{i=1}^k E_i = \Omega$

Think of sample space as a puzzle & the partitioning events as puzzle pieces.

Events E_1, E_2, E_3, E_4 partition sample space Ω .

Law of Total Probability (LTP)

Theorem

(Law of Total Probability)

Let E_1, \ldots, E_k partition sample space Ω . Then $\mathbb{P}(F) = \sum_{i=1}^{k} \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)$

Events E_1, E_2, E_3, E_4 partition sample space Ω .

Law of Total Probability (LTP)

Theorem

(Law of Total Probability)

Let E_1, \ldots, E_k partition sample space Ω . Then $\mathbb{P}(F) = \sum_{i=1} \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)$

<u>PROOF:</u> Observe that events $F \cap E_1, F \cap E_2, \dots, F \cap E_k$ are pairwise disjoint since events E_1, E_2, \dots, E_k are pairwise disjoint.

Law of Total Probability (LTP)

Theorem

(Law of Total Probability)

Let E_1, \ldots, E_k partition sample space Ω . Then $\mathbb{P}(F) = \sum_{i=1} \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)$

PROOF: Then,
$$\mathbb{P}(F) = \sum_{i=1}^{k} \mathbb{P}(F \cap E_i) = \sum_{i=1}^{k} \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)$$

Theorem

(Bayes' Theorem)

Let events $E_1, \ldots, E_k \subseteq \Omega$ partition sample space Ω . Then

$$\mathbb{P}(E_j|F) = \frac{\mathbb{P}(F|E_j) \cdot \mathbb{P}(E_j)}{\sum_{i=1}^k \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)} \quad \text{for } j = 1, 2, \dots, k$$

$$\underline{\mathsf{PROOF:}} \quad \mathbb{P}(E_j|F) = \frac{\mathbb{P}(F \cap E_j)}{\mathbb{P}(F)} = \frac{\mathbb{P}(F|E_j) \cdot \mathbb{P}(E_j)}{\mathbb{P}(F)} \stackrel{LTP}{=} \frac{\mathbb{P}(F|E_j) \cdot \mathbb{P}(E_j)}{\sum_{i=1}^k \mathbb{P}(F|E_i) \cdot \mathbb{P}(E_i)}$$

PART III: PROBABILITIY TREES & JOINT PROBABILITY TABLES

Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:

Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events F_1, F_2, F_3 must partition the sample space Ω .

Two-Stage Experiments & Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events E_1, E_2, E_3 must partition the sample space Ω .

2-Stage Experiments & 2-Way Joint Probability Tables

2-stage experiments can be summarized using 2-way joint probability table:

	F	F^c	TOTAL
Ε	$\mathbb{P}(E \cap F)$	$\mathbb{P}(E \cap F^c)$	$\mathbb{P}(E)$
E^{c}	$\mathbb{P}(E^c \cap F)$	$\mathbb{P}(E^c \cap F^c)$	$\mathbb{P}(E^c)$
TOTAL	$\mathbb{P}(F)$	$\mathbb{P}(F^c)$	(DON'T CARE)

	F_1	F_2	F_2	TOTAL
E_1	$\mathbb{P}(E_1 \cap F_1)$	$\mathbb{P}(E_1 \cap F_2)$	$\mathbb{P}(E_1 \cap F_3)$	$\mathbb{P}(E_1)$
E_2	$\mathbb{P}(E_2 \cap F_1)$	$\mathbb{P}(E_2 \cap F_2)$	$\mathbb{P}(E_2 \cap F_3)$	$\mathbb{P}(E_2)$
E_3	$\mathbb{P}(E_3 \cap F_1)$	$\mathbb{P}(E_3 \cap F_2)$	$\mathbb{P}(E_3 \cap F_3)$	$\mathbb{P}(E_3)$
TOTAL	$\mathbb{P}(F_1)$	$\mathbb{P}(F_2)$	$\mathbb{P}(F_3)$	(DON'T CARE)

Here, events E_1, E_2, E_3 must partition sample space Ω . Here, events F_1, F_2, F_3 must partition sample space Ω .

3-Stage Experiments & 3-Way Joint Probability Tables

3-stage experiments can be summarized via 3-way joint probability tables:

E	G	G^c	TOTAL
F	$\mathbb{P}(E \cap F \cap G)$	$\mathbb{P}(E \cap F \cap G^c)$	$\mathbb{P}(E \cap F)$
F^{c}	$\mathbb{P}(E \cap F^c \cap G)$	$\mathbb{P}(E \cap F^c \cap G^c)$	$\mathbb{P}(E\cap F^c)$
TOTAL	$\mathbb{P}(E \cap G)$	$\mathbb{P}(E \cap G^c)$	(DON'T CARE)
E^c	G	G^c	TOTAL
$\frac{E^c}{F}$	G $\mathbb{P}(E^c \cap F \cap G)$	$G^c = \mathbb{P}(E^c \cap F \cap G^c)$	TOTAL $\mathbb{P}(E^c \cap F)$
$\frac{E^c}{F}{F^c}$	$egin{array}{c} G \ \mathbb{P}(E^c \cap F \cap G) \ \mathbb{P}(E^c \cap F^c \cap G) \end{array}$	$egin{array}{c} G^c \ \mathbb{P}(E^c \cap F \cap G^c) \ \mathbb{P}(E^c \cap F^c \cap G^c) \end{array}$	TOTAL $\mathbb{P}(E^c \cap F)$ $\mathbb{P}(E^c \cap F^c)$

3-Stage Experiments & 3-Way Joint Probability Tables

E_1	G_1	G_2	G_3	TOTAL
F_1	$\mathbb{P}(E_1 \cap F_1 \cap G_1)$	$\mathbb{P}(E_1 \cap F_1 \cap G_2)$	$\mathbb{P}(E_1 \cap F_1 \cap G_3)$	$\mathbb{P}(E_1 \cap F_1)$
F_2	$\mathbb{P}(E_1 \cap F_2 \cap G_1)$	$\mathbb{P}(E_1 \cap F_2 \cap G_2)$	$\mathbb{P}(E_1 \cap F_2 \cap G_3)$	$\mathbb{P}(E_1 \cap F_2)$
F_3	$\mathbb{P}(E_1 \cap F_3 \cap G_1)$	$\mathbb{P}(E_1 \cap F_3 \cap G_2)$	$\mathbb{P}(E_1 \cap F_3 \cap G_3)$	$\mathbb{P}(E_1 \cap F_3)$
TOTAL	$\mathbb{P}(E_1 \cap G_1)$	$\mathbb{P}(E_1 \cap G_2)$	$\mathbb{P}(E_1 \cap G_3)$	(DON'T CARE)
E_2	G_1	G_2	G_3	TOTAL
F_1	$\mathbb{P}(E_2 \cap F_1 \cap G_1)$	$\mathbb{P}(E_2 \cap F_1 \cap G_2)$	$\mathbb{P}(E_2 \cap F_1 \cap G_3)$	$\mathbb{P}(E_2 \cap F_1)$
F_2	$\mathbb{P}(E_2 \cap F_2 \cap G_1)$	$\mathbb{P}(E_2 \cap F_2 \cap G_2)$	$\mathbb{P}(E_2 \cap F_2 \cap G_3)$	$\mathbb{P}(E_2 \cap F_2)$
F_3	$\mathbb{P}(E_2 \cap F_3 \cap G_1)$	$\mathbb{P}(E_2 \cap F_3 \cap G_2)$	$\mathbb{P}(E_2 \cap F_3 \cap G_3)$	$\mathbb{P}(E_2 \cap F_3)$
TOTAL	$\mathbb{P}(E_2 \cap G_1)$	$\mathbb{P}(E_2 \cap G_2)$	$\mathbb{P}(E_2 \cap G_3)$	(DON'T CARE)
E_3	G_1	G_2	G_3	TOTAL
F_1	$\mathbb{P}(E_3 \cap F_1 \cap G_1)$	$\mathbb{P}(E_3 \cap F_1 \cap G_2)$	$\mathbb{P}(E_3 \cap F_1 \cap G_3)$	$\mathbb{P}(E_3 \cap F_1)$
F_2	$\mathbb{P}(E_3 \cap F_2 \cap G_1)$	$\mathbb{P}(E_3 \cap F_2 \cap G_2)$	$\mathbb{P}(E_3 \cap F_2 \cap G_3)$	$\mathbb{P}(E_3 \cap F_2)$
F_3	$\mathbb{P}(E_3 \cap F_3 \cap G_1)$	$\mathbb{P}(E_3 \cap F_3 \cap G_2)$	$\mathbb{P}(E_3 \cap F_3 \cap G_3)$	$\mathbb{P}(E_3 \cap F_3)$
TOTAL	$\mathbb{P}(E_3 \cap G_1)$	$\mathbb{P}(E_3 \cap G_2)$	$\mathbb{P}(E_3 \cap G_3)$	(DON'T CARE)
Events E_1, E_2, E_3 must partition Ω . Ditto for F_1, F_2, F_3 . Ditto for G_1, G_2, G_3 .				

How does one choose among using measures, probability trees, and joint probability tables???

GIVEN SITUATION	METHOD TO USE
Small Sample Space and its Outcomes	$\mathbb{P}(E F) = rac{ E \cap F }{ F }$
Many Ordinary Probabilities	$\mathbb{P}(E F) = rac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$
Many Conditional Probabilities	Probability Tree
Many Intersection Probabilities	Joint Probability Table

- NOTE: Using set operation properties may be necessary.
- NOTE: Constructing a Venn Diagram may be helpful.
- NOTE: Using the Principle of Inclusion-Exclusion may be helpful/necessary.

Textbook Logistics for Section 2.4

• Difference(s) in Terminology:

TEXTBOOK	SLIDES/OUTLINE	
TERMINOLOGY	TERMINOLOGY	
Null Event Ø	Empty Set Ø	
Number of Outcomes in E	Measure of E	

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	S	Ω
Complement of Event	A'	A^c
Probability of Event	P(A)	$\mathbb{P}(A)$
Measure of Event	N(A)	A
<i>k</i> -Permutations of <i>n</i> -element Set	$P_{k,n}$	P_k^n
Conditional Probability	P(A B)	$\mathbb{P}(A B)$

Fin.