Probability: Conditioning, Bayes' Theorem

Engineering Statistics
Section 2.4

Josh Engwer

TTU

08 February 2016

PART I: CONDITIONAL PROBABILITY

Conditional Probability (Definition)

The occurrence of one event can affect the probability of another event:

Definition

(Conditional Probability)
Let events E, F be events in the sample space Ω of an experiment.
Then:

- The conditional probability of F given E, denoted $\mathbb{P}(F \mid E)$, is the probability of event F assuming that event E has already occurred.
- The conditional probability of E given F, denoted $\mathbb{P}(E \mid F)$, is the probability of event E assuming that event F has already occurred.

WARNING: Order matters: in general, $\mathbb{P}(F \mid E) \neq \mathbb{P}(E \mid F)$

Conditional Probability

But the previous definition is too crude to use. How does conditional probability relate to ordinary probability?

Proposition

(Conditional Probability)
Let events E, F be events in the sample space Ω such that $|E|>0$. Then:

$$
\mathbb{P}(\text { If } E \text { then } F)=\mathbb{P}(F \text { given } E)=\mathbb{P}(F \mid E):=\frac{|E \cap F|}{|E|}
$$

WARNING: Order matters: in general, $\mathbb{P}(F \mid E) \neq \mathbb{P}(E \mid F)$

Conditional Probability

But the previous definition is too crude to use. How does conditional probability relate to ordinary probability?

Proposition

(Conditional Probability)
Let events E, F be events in the sample space Ω such that $\mathbb{P}(E)>0$. Then:

$$
\mathbb{P}(\text { If } E \text { then } F)=\mathbb{P}(F \text { given } E)=\mathbb{P}(F \mid E):=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}
$$

WARNING: Order matters: in general, $\mathbb{P}(F \mid E) \neq \mathbb{P}(E \mid F)$ PROOF:
$\mathbb{P}(F \mid E)=\frac{|E \cap F|}{|E|}=\frac{|E \cap F| /|\Omega|}{|E| /|\Omega|}=\frac{|E \cap F|}{|\Omega|} \div \frac{|E|}{|\Omega|}=\mathbb{P}(E \cap F) \div \mathbb{P}(E)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled. (a) Find the probability that the coin shows tails given that the die shows 5 . (b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{6}{12}=\frac{1}{2}, \quad \mathbb{P}(F)=\frac{|F|}{|\Omega|}=\frac{2}{12}=\frac{1}{6}, \quad \mathbb{P}(E \cap F)=\frac{|E \cap F|}{|\Omega|}=\frac{1}{12}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{6}{12}=\frac{1}{2}, \quad \mathbb{P}(F)=\frac{|F|}{|\Omega|}=\frac{2}{12}=\frac{1}{6}, \quad \mathbb{P}(E \cap F)=\frac{|E \cap F|}{|\Omega|}=\frac{1}{12}$
(a) $\mathbb{P}(E$ given $F)=\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}=\frac{1 / 12}{1 / 6}=\frac{1}{12} \div \frac{1}{6}=\frac{1}{12} \times \frac{6}{1}=\frac{1}{2}$

Conditional Probability (Example)

WEX 2-4-1: A fair coin is flipped and a fair six-sided die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space $\Omega=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{6}{12}=\frac{1}{2}, \quad \mathbb{P}(F)=\frac{|F|}{|\Omega|}=\frac{2}{12}=\frac{1}{6}, \quad \mathbb{P}(E \cap F)=\frac{|E \cap F|}{|\Omega|}=\frac{1}{12}$
(a) $\mathbb{P}(E$ given $F)=\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}=\frac{1 / 12}{1 / 6}=\frac{1}{12} \div \frac{1}{6}=\frac{1}{12} \times \frac{6}{1}=\frac{1}{2}$
(b) $\mathbb{P}($ If E then $F)=\mathbb{P}(F \mid E)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}=\frac{1 / 12}{1 / 2}=\frac{1}{12} \div \frac{1}{2}=\frac{1}{12} \times \frac{2}{1}=\frac{1}{6}$

Intersection of Events (Alternative Formula)

The intersection of two events can found using conditional probability:

Proposition

(Intersection of Two Events)
Let events E, F be events in the sample space Ω of an experiment. Then:

$$
\begin{gathered}
\mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F \mid E) \\
\text { or equivalently } \\
\mathbb{P}(E \cap F)=\mathbb{P}(F) \cdot \mathbb{P}(E \mid F)
\end{gathered}
$$

PROOF: Solve $\mathbb{P}(F \mid E)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$ or $\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$ for $\mathbb{P}(E \cap F)$.

PART II: PARTITIONS OF SAMPLE SPACE LAW OF TOTAL PROBABILITY, BAYES' THEOREM

Partition of the Sample Space

Definition

Events $E_{1}, E_{2}, \ldots, E_{k} \subseteq \Omega$ partition sample space Ω if:

$$
E_{1}, E_{2}, \ldots, E_{k} \text { are pairwise disjoint } \text { AND } \bigcup_{i=1}^{k} E_{i}=\Omega
$$

Think of sample space as a puzzle \& the partitioning events as puzzle pieces.

Events $E_{1}, E_{2}, E_{3}, E_{4}$ partition sample space Ω.

Law of Total Probability

Theorem

(Law of Total Probability)
Let $E_{1}, \ldots, E_{k} \underline{\text { partition }}$ sample space Ω. Then $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$

Events $E_{1}, E_{2}, E_{3}, E_{4}$ partition sample space Ω.

Law of Total Probability (LTP)

Theorem

(Law of Total Probability)
Let $E_{1}, \ldots, E_{k} \underline{\text { partition }}$ sample space Ω. Then $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$

PROOF: Observe that events $F \cap E_{1}, F \cap E_{2}, \ldots, F \cap E_{k}$ are pairwise disjoint since events $E_{1}, E_{2}, \ldots, E_{k}$ are pairwise disjoint.

Law of Total Probability
 (LTP)

Theorem

(Law of Total Probability)
Let $E_{1}, \ldots, E_{k} \underline{\text { partition }}$ sample space Ω. Then $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$

PROOF: Then, $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(F \cap E_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)$

Bayes' Theorem

Theorem

(Bayes' Theorem)
Let events $E_{1}, \ldots, E_{k} \subseteq \Omega$ partition sample space Ω. Then

$$
\mathbb{P}\left(E_{j} \mid F\right)=\frac{\mathbb{P}\left(F \mid E_{j}\right) \cdot \mathbb{P}\left(E_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)} \quad \text { for } j=1,2, \ldots, k
$$

PROOF: $\mathbb{P}\left(E_{j} \mid F\right)=\frac{\mathbb{P}\left(F \cap E_{j}\right)}{\mathbb{P}(F)}=\frac{\mathbb{P}\left(F \mid E_{j}\right) \cdot \mathbb{P}\left(E_{j}\right)}{\mathbb{P}(F)} \stackrel{\text { LTP }}{=} \frac{\mathbb{P}\left(F \mid E_{j}\right) \cdot \mathbb{P}\left(E_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(F \mid E_{i}\right) \cdot \mathbb{P}\left(E_{i}\right)}$

PART III

PART III: PROBABILITIY TREES \& JOINT PROBABILITY TABLES

Two-Stage Experiments \& Probability Trees

Two-stage experiments can be visualized using a probability tree:

Two-Stage Experiments \& Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events F_{1}, F_{2}, F_{3} must partition the sample space Ω.

Two-Stage Experiments \& Probability Trees

Two-stage experiments can be visualized using a probability tree:

Events E_{1}, E_{2}, E_{3} must partition the sample space Ω.

2-Stage Experiments \& 2-Way Joint Probability Tables

2-stage experiments can be summarized using 2-way joint probability table:

	F	F^{c}	TOTAL
E	$\mathbb{P}(E \cap F)$	$\mathbb{P}\left(E \cap F^{c}\right)$	$\mathbb{P}(E)$
E^{c}	$\mathbb{P}\left(E^{c} \cap F\right)$	$\mathbb{P}\left(E^{c} \cap F^{c}\right)$	$\mathbb{P}\left(E^{c}\right)$
TOTAL	$\mathbb{P}(F)$	$\mathbb{P}\left(F^{c}\right)$	(DON'T CARE)

	F_{1}	F_{2}	F_{2}	TOTAL
E_{1}	$\mathbb{P}\left(E_{1} \cap F_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3}\right)$	$\mathbb{P}\left(E_{1}\right)$
E_{2}	$\mathbb{P}\left(E_{2} \cap F_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3}\right)$	$\mathbb{P}\left(E_{2}\right)$
E_{3}	$\mathbb{P}\left(E_{3} \cap F_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3}\right)$	$\mathbb{P}\left(E_{3}\right)$
TOTAL	$\mathbb{P}\left(F_{1}\right)$	$\mathbb{P}\left(F_{2}\right)$	$\mathbb{P}\left(F_{3}\right)$	(DON'T CARE)

Here, events E_{1}, E_{2}, E_{3} must partition sample space Ω. Here, events F_{1}, F_{2}, F_{3} must partition sample space Ω.

3-Stage Experiments \& 3-Way Joint Probability Tables

3-stage experiments can be summarized via 3-way joint probability tables:

E	G	G^{c}	TOTAL
F	$\mathbb{P}(E \cap F \cap G)$	$\mathbb{P}\left(E \cap F \cap G^{c}\right)$	$\mathbb{P}(E \cap F)$
F^{c}	$\mathbb{P}\left(E \cap F^{c} \cap G\right)$	$\mathbb{P}\left(E \cap F^{c} \cap G^{c}\right)$	$\mathbb{P}\left(E \cap F^{c}\right)$
TOTAL	$\mathbb{P}(E \cap G)$	$\mathbb{P}\left(E \cap G^{c}\right)$	(DON'T CARE)

E^{c}	G	G^{c}	TOTAL
F	$\mathbb{P}\left(E^{c} \cap F \cap G\right)$	$\mathbb{P}\left(E^{c} \cap F \cap G^{c}\right)$	$\mathbb{P}\left(E^{c} \cap F\right)$
F^{c}	$\mathbb{P}\left(E^{c} \cap F^{c} \cap G\right)$	$\mathbb{P}\left(E^{c} \cap F^{c} \cap G^{c}\right)$	$\mathbb{P}\left(E^{c} \cap F^{c}\right)$
TOTAL	$\mathbb{P}\left(E^{c} \cap G\right)$	$\mathbb{P}\left(E^{c} \cap G^{c}\right)$	(DON'T CARE $)$

3-Stage Experiments \& 3-Way Joint Probability Tables

E_{1}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{1} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{1} \cap G_{3}\right)$	(DON'T CARE $)$
E_{2}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{2} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{2} \cap G_{3}\right)$	(DON'T CARE)
E_{3}	G_{1}	G_{2}	G_{3}	TOTAL
F_{1}	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{1}\right)$
F_{2}	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{2}\right)$
F_{3}	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3} \cap G_{3}\right)$	$\mathbb{P}\left(E_{3} \cap F_{3}\right)$
TOTAL	$\mathbb{P}\left(E_{3} \cap G_{1}\right)$	$\mathbb{P}\left(E_{3} \cap G_{2}\right)$	$\mathbb{P}\left(E_{3} \cap G_{3}\right)$	$($ DON'T CARE $)$

Events E_{1}, E_{2}, E_{3} must partition Ω. Ditto for F_{1}, F_{2}, F_{3}. Ditto for G_{1}, G_{2}, G_{3}.

Some Loose Guidelines to avoid Dead-Ends

How does one choose among using measures, probability trees, and joint probability tables???

GIVEN SITUATION	METHOD TO USE
Small Sample Space and its Outcomes	$\mathbb{P}(E \mid F)=\frac{\|E \cap F\|}{\|F\|}$
Many Ordinary Probabilities	$\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$
Many Conditional Probabilities	Probability Tree
Many Intersection Probabilities	Joint Probability Table

NOTE: Using set operation properties may be necessary.
NOTE: Constructing a Venn Diagram may be helpful.
NOTE: Using the Principle of Inclusion-Exclusion may be helpful/necessary.

Textbook Logistics for Section 2.4

- Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event \emptyset	Empty Set \emptyset
Number of Outcomes in E	Measure of E

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	\mathcal{S}	Ω
Complement of Event	A^{\prime}	A^{c}
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Measure of Event	$N(A)$	$\|A\|$
k-Permutations of n-element Set	$P_{k, n}$	P_{k}^{n}
Conditional Probability	$P(A \mid B)$	$\mathbb{P}(A \mid B)$

Fin.

