Probability: Independence of Events Engineering Statistics Section 2.5

Josh Engwer

TTU

10 February 2016

Josh Engwer (TTU)

Sometimes one would like to know if the occurrence of one event affects the chances of another event occurring.

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment.

```
Then E & F are independent if \mathbb{P}(E|F) = \mathbb{P}(E).
```

Otherwise, *E* & *F* are **dependent** if $\mathbb{P}(E|F) \neq \mathbb{P}(E)$.

WARNING: Two pairwise disjoint events are never independent!!!

Proposition

Events *E* & *F* are independent if and only if $\mathbb{P}(E \cap F) = \mathbb{P}(E) \cdot \mathbb{P}(F)$

<u>PROOF:</u> Let *E* & *F* be independent. Then, by definition, $\mathbb{P}(E|F) = \mathbb{P}(E)$. Hence, $\mathbb{P}(E \cap F) = \mathbb{P}(F) \cdot \mathbb{P}(E|F) \stackrel{IND}{=} \mathbb{P}(F) \cdot \mathbb{P}(E)$

Independence of Two Events (Example)

WEX 2-5-1: Two fair coins are flipped and then their top faces are observed. Sample Space $\Omega = \{HH, HT, TH, TT\}$

Let Event $E \equiv 1^{st}$ coin is heads $= \{HH, HT\} \implies \mathbb{P}(E) = 0.5$ Let Event $F \equiv 2^{nd}$ coin is tails $= \{HT, TT\} \implies \mathbb{P}(F) = 0.5$ Let Event $G \equiv$ Both coins are heads $= \{HH\} \implies \mathbb{P}(G) = 0.25$

Then, $E \cap F = \{HT\} \implies \mathbb{P}(E \cap F) = 0.25$ and $\mathbb{P}(E) \cdot \mathbb{P}(F) = (0.5)(0.5) = 0.25$ $\therefore \mathbb{P}(E \cap F) = \mathbb{P}(E) \cdot \mathbb{P}(F) \implies \boxed{\text{Events } E \& F \text{ are independent}}$

But, $E \cap G = \{HH\} \implies \mathbb{P}(E \cap G) = 0.25$ and $\mathbb{P}(E) \cdot \mathbb{P}(G) = (0.5)(0.25) = 0.125$ $\therefore \mathbb{P}(E \cap G) \neq \mathbb{P}(E) \cdot \mathbb{P}(G) \implies$ Events E & G are <u>not</u> independent

 $\begin{array}{l} F \cap G = \emptyset \implies \mathbb{P}(F \cap G) = 0 \quad \text{and} \quad \mathbb{P}(F) \cdot \mathbb{P}(G) = (0.5)(0.25) = 0.125 \\ \therefore \quad \mathbb{P}(F \cap G) \neq \mathbb{P}(F) \cdot \mathbb{P}(G) \implies \boxed{ \text{Events } F \& G \text{ are } \underline{\text{not}} \text{ independent} } \end{array}$

Notice that F & G are pairwise disjoint and, yet, are not independent!!

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E & F are independent if and only if E^c & F^c are independent.

Proposition

Events E & F are independent if and only if E^c & F are independent.

Proposition

Events E & F are independent if and only if E & F^c are independent.

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E & F are independent if and only if E^c & F^c are independent.

Proposition

Events E & F are independent if and only if $E^c \& F$ are independent.

Proposition

Events E & F are independent if and only if E & F^c are independent.

PROOF: Let *E* & *F* be independent. Then $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$.

$$\mathbb{P}(E^{c} \cap F^{c}) = \mathbb{P}[(E \cup F)^{c}]$$

$$= 1 - \mathbb{P}(E \cup F)$$

$$= 1 - \mathbb{P}(E) - \mathbb{P}(F) + \mathbb{P}(E \cap F)$$

$$\frac{IND}{=} 1 - \mathbb{P}(E) - \mathbb{P}(F) + \mathbb{P}(E)\mathbb{P}(F)$$

$$= [1 - \mathbb{P}(E)][1 - \mathbb{P}(F)]$$

$$= \mathbb{P}(E^{c})\mathbb{P}(F^{c}) \qquad \therefore E^{c} \& F^{c} \text{ are independent}$$

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E & F are independent if and only if E^c & F^c are independent.

Proposition

Events E & F are independent if and only if E^c & F are independent.

Proposition

Events E & F are independent if and only if E & F^c are independent.

<u>PROOF</u>: Let *E* & *F* be independent. Then $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$. $\mathbb{P}(E^c \cap F) = \mathbb{P}(F) - \mathbb{P}(E \cap F)$ $\stackrel{IND}{=} \mathbb{P}(F) - \mathbb{P}(E)\mathbb{P}(F)$ $= [1 - \mathbb{P}(E)]\mathbb{P}(F)$ $= \mathbb{P}(E^c)\mathbb{P}(F)$ $\therefore E^c \& F$ are independent

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E & F are independent if and only if E^c & F^c are independent.

Proposition

Events E & F are independent if and only if E^c & F are independent.

Proposition

Events E & F are independent if and only if E & F^c are independent.

<u>PROOF</u>: Let *E* & *F* be independent. Then $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$. $\mathbb{P}(E \cap F^c) = \mathbb{P}(E) - \mathbb{P}(E \cap F)$ $\stackrel{IND}{=} \mathbb{P}(E) - \mathbb{P}(E)\mathbb{P}(F)$ $= \mathbb{P}(E)[1 - \mathbb{P}(F)]$ $= \mathbb{P}(E)\mathbb{P}(F^c)$ $\therefore E \& F^c$ are independent

Definition

Let $E_1, E_2, E_3 \subseteq \Omega$ be three events from sample space Ω of an experiment. Then E_1, E_2, E_3 are (mutually) independent if the following are all true:

 $\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1) \cdot \mathbb{P}(E_2)$ $\mathbb{P}(E_1 \cap E_3) = \mathbb{P}(E_1) \cdot \mathbb{P}(E_3)$ $\mathbb{P}(E_2 \cap E_3) = \mathbb{P}(E_2) \cdot \mathbb{P}(E_3)$ $\mathbb{P}(E_1 \cap E_2 \cap E_3) = \mathbb{P}(E_1) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_3)$

Note that any of the mutually independent events E_1, E_2, E_3 can be replaced by their corresponding complements and still remain mutually independent:

$$\begin{split} \mathbb{P}(E_1 \cap E_2^c) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2^c) \\ \mathbb{P}(E_1^c \cap E_2) &= \mathbb{P}(E_1^c) \cdot \mathbb{P}(E_2) \\ \mathbb{P}(E_1^c \cap E_2^c) &= \mathbb{P}(E_1^c) \cdot \mathbb{P}(E_2^c) \\ \mathbb{P}(E_1 \cap E_2^c \cap E_3) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2^c) \cdot \mathbb{P}(E_3) \\ \mathbb{P}(E_1^c \cap E_2 \cap E_3^c) &= \mathbb{P}(E_1^c) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_3^c) \\ \mathbb{P}(E_1^c \cap E_2 \cap E_3^c) &= \mathbb{P}(E_1^c) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_3^c) \\ \mathbf{etc...} \end{split}$$

Definition

Let $E_1, E_2, E_3, E_4 \subseteq \Omega$ be four events from sample space Ω of an experiment. Then E_1, E_2, E_3, E_4 are (mutually) independent if the following are all true:

$$\begin{split} \mathbb{P}(E_1 \cap E_2) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2) \\ \mathbb{P}(E_1 \cap E_3) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_3) \\ \mathbb{P}(E_1 \cap E_4) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_2 \cap E_3) &= \mathbb{P}(E_2) \cdot \mathbb{P}(E_3) \\ \mathbb{P}(E_2 \cap E_4) &= \mathbb{P}(E_2) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_3 \cap E_4) &= \mathbb{P}(E_3) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_1 \cap E_2 \cap E_3) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_3) \\ \mathbb{P}(E_1 \cap E_3 \cap E_4) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_1 \cap E_3 \cap E_4) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_3) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_1 \cap E_3 \cap E_4) &= \mathbb{P}(E_2) \cdot \mathbb{P}(E_3) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_1 \cap E_3 \cap E_4) &= \mathbb{P}(E_2) \cdot \mathbb{P}(E_3) \cdot \mathbb{P}(E_4) \\ \mathbb{P}(E_1 \cap E_2 \cap E_3 \cap E_4) &= \mathbb{P}(E_1) \cdot \mathbb{P}(E_2) \cdot \mathbb{P}(E_3) \cdot \mathbb{P}(E_4) \end{split}$$

Textbook Logistics for Section 2.5

• Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY	
Null Event Ø	Empty Set Ø	
Number of Outcomes in E	Measure of E	

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	S	Ω
Complement of Event	A'	A^c
Probability of Event	P(A)	$\mathbb{P}(A)$
Measure of Event	N(A)	A
<i>k</i> -Permutations of <i>n</i> -element Set	$P_{k,n}$	P_k^n
Conditional Probability	P(A B)	$\mathbb{P}(A B)$

Fin.