Probability: Independence of Events

Engineering Statistics

Section 2.5

Josh Engwer

TTU

10 February 2016

Independence of Two Events

Sometimes one would like to know if the occurrence of one event affects the chances of another event occurring.

Definition

Let $E, F \subseteq \Omega$ be two events from sample space Ω of an experiment.
Then $E \& F$ are independent if $\mathbb{P}(E \mid F)=\mathbb{P}(E)$.
Otherwise, $E \& F$ are dependent if $\mathbb{P}(E \mid F) \neq \mathbb{P}(E)$.

WARNING: Two pairwise disjoint events are never independent!!!

Proposition

Events $E \& F$ are independent if and only if $\mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F)$
PROOF: Let $E \& F$ be independent. Then, by definition, $\mathbb{P}(E \mid F)=\mathbb{P}(E)$. Hence, $\mathbb{P}(E \cap F)=\mathbb{P}(F) \cdot \mathbb{P}(E \mid F) \stackrel{I N D}{=} \mathbb{P}(F) \cdot \mathbb{P}(E)$

Independence of Two Events (Example)

WEX 2-5-1: Two fair coins are flipped and then their top faces are observed. Sample Space $\Omega=\{H H, H T, T H, T T\}$
Let Event $E \equiv 1^{\text {st }}$ coin is heads $\quad=\{H H, H T\} \quad \Longrightarrow \mathbb{P}(E)=0.5$
Let Event $F \equiv 2^{\text {nd }}$ coin is tails $=\{H T, T T\} \quad \Longrightarrow \quad \mathbb{P}(F)=0.5$
Let Event $G \equiv$ Both coins are heads $=\{H H\} \Longrightarrow \mathbb{P}(G)=0.25$

Then, $E \cap F=\{H T\} \Longrightarrow \mathbb{P}(E \cap F)=0.25$ and $\mathbb{P}(E) \cdot \mathbb{P}(F)=(0.5)(0.5)=0.25$
$\therefore \mathbb{P}(E \cap F)=\mathbb{P}(E) \cdot \mathbb{P}(F) \Longrightarrow$ Events $E \& F$ are independent

But, $E \cap G=\{H H\} \Longrightarrow \mathbb{P}(E \cap G)=0.25$ and $\mathbb{P}(E) \cdot \mathbb{P}(G)=(0.5)(0.25)=0.125$
$\therefore \mathbb{P}(E \cap G) \neq \mathbb{P}(E) \cdot \mathbb{P}(G) \Longrightarrow$ Events $E \& G$ are not independent
$F \cap G=\emptyset \Longrightarrow \mathbb{P}(F \cap G)=0$ and $\mathbb{P}(F) \cdot \mathbb{P}(G)=(0.5)(0.25)=0.125$
$\therefore \mathbb{P}(F \cap G) \neq \mathbb{P}(F) \cdot \mathbb{P}(G) \Longrightarrow$ Events $F \& G$ are not independent
Notice that $F \& G$ are pairwise disjoint and, yet, are not independent!!

Independence of Complement(s) of Two Events

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E \& F are independent if and only if $E^{c} \& F^{c}$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E^{c} \& F$ are independent.

Proposition

Events $E \& F$ are independent if and only if E \& F^{c} are independent.

Independence of Complement(s) of Two Events

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events $E \& F$ are independent if and only if $E^{c} \& F^{c}$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E^{c} \& F$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E \& F^{c}$ are independent.
PROOF: Let $E \& F$ be independent. Then $\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F)$.

$$
\begin{aligned}
& \mathbb{P}\left(E^{c} \cap F^{c}\right)=\mathbb{P}\left[(E \cup F)^{c}\right] \\
&=1-\mathbb{P}(E \cup F) \\
&=1-\mathbb{P}(E)-\mathbb{P}(F)+\mathbb{P}(E \cap F) \\
& \stackrel{I N D}{=} 1-\mathbb{P}(E)-\mathbb{P}(F)+\mathbb{P}(E) \mathbb{P}(F) \\
&=[1-\mathbb{P}(E)][1-\mathbb{P}(F)] \\
&=\mathbb{P}\left(E^{c}\right) \mathbb{P}\left(F^{c}\right) \quad \therefore E^{c} \& F^{c} \text { are independent }
\end{aligned}
$$

Independence of Complement(s) of Two Events

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E \& F are independent if and only if $E^{c} \& F^{c}$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E^{c} \& F$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E \& F^{c}$ are independent.
PROOF: Let $E \& F$ be independent. Then $\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F)$.

$$
\begin{aligned}
\mathbb{P}\left(E^{c} \cap F\right) & =\mathbb{P}(F)-\mathbb{P}(E \cap F) \\
& \stackrel{I N D}{=} \mathbb{P}(F)-\mathbb{P}(E) \mathbb{P}(F) \\
& =[1-\mathbb{P}(E)] \mathbb{P}(F)
\end{aligned}
$$

$$
=\mathbb{P}\left(E^{c}\right) \mathbb{P}(F) \quad \therefore E^{c} \& F \text { are independent }
$$

Independence of Complement(s) of Two Events

Often, it's crucial to know if complement(s) of event(s) are independent or not:

Proposition

Events E \& F are independent if and only if $E^{c} \& F^{c}$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E^{c} \& F$ are independent.

Proposition

Events $E \& F$ are independent if and only if $E \& F^{c}$ are independent.
PROOF: Let $E \& F$ be independent. Then $\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F)$.
$\mathbb{P}\left(E \cap F^{c}\right)=\mathbb{P}(E)-\mathbb{P}(E \cap F)$
$\stackrel{I N D}{=} \mathbb{P}(E)-\mathbb{P}(E) \mathbb{P}(F)$
$=\mathbb{P}(E)[1-\mathbb{P}(F)]$
$=\mathbb{P}(E) \mathbb{P}\left(F^{c}\right) \quad \therefore E \& F^{c}$ are independent

Independence of Three Events

Definition

Let $E_{1}, E_{2}, E_{3} \subseteq \Omega$ be three events from sample space Ω of an experiment.
Then E_{1}, E_{2}, E_{3} are (mutually) independent if the following are all true:

$$
\begin{gathered}
\mathbb{P}\left(E_{1} \cap E_{2}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right)
\end{gathered}
$$

Note that any of the mutually independent events E_{1}, E_{2}, E_{3} can be replaced by their corresponding complements and still remain mutually independent:

$$
\begin{gathered}
\mathbb{P}\left(E_{1} \cap E_{2}^{c}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right) \\
\mathbb{P}\left(E_{1}^{c} \cap E_{2}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}\right) \\
\mathbb{P}\left(E_{1}^{c} \cap E_{2}^{c}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2}^{c} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}^{c}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1}^{c} \cap E_{2} \cap E_{3}^{c}\right)=\mathbb{P}\left(E_{1}^{c}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}^{c}\right) \\
\text { etc... }
\end{gathered}
$$

Independence of Four Events

Definition

Let $E_{1}, E_{2}, E_{3}, E_{4} \subseteq \Omega$ be four events from sample space Ω of an experiment. Then $E_{1}, E_{2}, E_{3}, E_{4}$ are (mutually) independent if the following are all true:

$$
\begin{gathered}
\mathbb{P}\left(E_{1} \cap E_{2}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{2} \cap E_{4}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{2} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right) \\
\mathbb{P}\left(E_{1} \cap E_{2} \cap E_{3} \cap E_{4}\right)=\mathbb{P}\left(E_{1}\right) \cdot \mathbb{P}\left(E_{2}\right) \cdot \mathbb{P}\left(E_{3}\right) \cdot \mathbb{P}\left(E_{4}\right)
\end{gathered}
$$

Textbook Logistics for Section 2.5

- Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event \emptyset	Empty Set \emptyset
Number of Outcomes in E	Measure of E

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	\mathcal{S}	Ω
Complement of Event	A^{\prime}	A^{c}
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Measure of Event	$N(A)$	$\|A\|$
k-Permutations of n-element Set	$P_{k, n}$	P_{k}^{n}
Conditional Probability	$P(A \mid B)$	$\mathbb{P}(A \mid B)$

Fin.

